AD=A111 008 NAVAL POSTGRADUATE SCHOOL MONTEREY C.
RAPID OCIANO:RAPNXC DATA GATHERINS? SDK PROBLEMS IN USING REHTC(U)

seP !
UNCLASSIFIED NP$568-81-006 NL

[ o
&

B
=IIEEIIIIIIIII.




NPS68-81-006 ’ f @

NAVAL PﬂSTGRADUATE SBHﬂﬂl

Monterey, California

* i\\\l/// g

THESIS

RAPID OCEANOGRAPHIC DATA GATHERING:
SQME PROBLEMS IN USING REMOTE SENSING TO DETERMINE
THEIKFIZONH&;AND\EﬂﬂICAL'ﬁﬂﬂ%@u.DISTRDNHHENS
IN THE NORTHEAST PACIFIC OCEAN

A Ao e X

by

Glenn W. Lundell

September 1981

Thesis Advisor:

G. H. Jung
distribution unlimiced.

Approved for public release;
Prepared for:

Naval Ocean Systems Center
Code 531

San Diego, California 92152

-
oMM R

"2 02 16 iss




—

SECURMITY CLASSIFICATION OF THiS PAGE (Phen Dalie Bntered)

REPORT DOCUMENTATION PAGE BEFORE CONPL BT FoRM
T REPORY NUMBER 3. OOVY ACCESSION MO 3 AECIPIENT'S CATALOG NUMBER
NPS 68-81-006 /5#/// 005
4 TITLE 7and Subtitte) 3. ,[YPE OF ngmonr & "-"'°° covemeo

Rapid Oceanographic Data Gathering: Same [;:mt;:rfib: rTi";g 1
Prablems in Using Remote Sensing to Determine P
the Horizontal and Vertical Thermal Distributions [¢ "$RFORMING ORG. aEROAT NuusER

7. AUTWOR/S) 6. CONTRACY ON GRANT NLMBEA(e)

Glenn W. Lundell

[9 PERFORMING ORGANIZATION NAME AND ACORESS 10. "32'.‘::&‘:5.”77..'u?.‘ff? TASK
Naval Postgraduate School
Monterey, California 93940 N6600181 WR00082
3 ‘ 11 CONTROLLING OFPICE NAME AND ADORESS 12. REPQAT DATE
; ! Naval Postgraduate School September 1981
. Monterey, California 93940 ") MuMeER OF Faces
L i YT MONITORING AGENCY NAME & ADORESS(I difforent frem Centroliing Office) 18. SECURITY CLASS. rof thie rdpen)
Unclassified

T8e. OECLASSIFICATION/ DOWNGRADIN
SCHEDULE oo

e et ———rse——aam
16. DISTRIBUTION STATEMENT ref thie Ropert)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Bleck 20, I dilfsrent frem Repeort)

18. SUPPLEMENTARY NOTES

t19. K€Y WORDS (Continue en reverse olide /! necessary and (dontify by bleck number)

Satellite; NOAA-6; Remote Sensing; GOSSTCOMP; Northeast Pacific
Ocean; Thermal Structure; Sea Surface Temperature; Subsurface
Thermal Structure; Fronts; Eddies; AXBT

\
'm.—r&Tc*r (Continue en reverse side i nossecary and Ideniify by Meck mumber)

NOAA-6 satellite AVHRR data and AXBT data were collected in
the Northeast Pacific Ocean in late 1980 as part of the Naval
Postgraduate School-sponsored Acoustic Storm Transfer and Response
Experiment which was in turn part of the U.S.-Canadian Storm Trans-
fer and Response Experiment (STREX). Some of the problems in transt
ferring AXBT geographical positions to satellite images were solved
by designing a computer program with accuracies of less than 2 pixejs.

| DD ,"9%"™. 1473 toimion oF ' nOV 8815 OBSOLETE
taan T S/M 0102-014-6601 UNCLASSIFIED

SECUMITY CLASBIPICATION OF THIE PAGE (When Dats fnteres) "

S 1w W A, L ) " .




UNCLASSIFIED

R S S T — Y
gtu-" Ghb.ﬂ..‘b'!’. OF Ywis PoQlrvien Neoce Snteny

. #20 - ABSTRACT -~ (CONTINUED)
Y

Thermal comparisons were made between AXBT, NOAA-6, and GOSSTCOMP
data with the result that NOAA-6 data was on the average 2.97TC
colder than AXBT data and 3.22C colder than GOSSTCOMP data.
Linear regression methods reduced to 0.3 the difference
between NOAA-6 and AXBT data. Use of tg}s method over a period
of 15 days produced a mean error of 0.5°C.

Although NOAA-6 cannot sense directly the subsurface thermal
structure, it is excellent for observing surface manifestations
of horizontal thermal features. Further investigation into
using satellite data as the basis of an empirical relationship
between the surface temperature and the subsurface vertical
thermal structure is warranted.

‘,.

Accé"ﬁ’ an For

[ nTTe oo -_u

PIT
U A

IR
Ja. no -
e
1
H
YR
' .
- i

(28]

DD  Form,k 1473 UNCLASSIFIED

5/.‘} %.1%2'-014-6601 SECUMTPY CLABHPICATION @F THIS PadErShen Dare Bniored)




Approved for public release; distribution unlimited.

Rapid Oceanographic Data Gathering:
Some Problems in Using Remote Sensing to Determine
the Horizontal and Vertical Thermal Distributions
in the Northeast Pacific Ocean

by

Glenn W. Lundell
Lieutenant, United States Navy
B.S.,University of Miami, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY

from the
NAVAL POSTGRADUATE SCHOOL
September 1981

Author: s

Approved by: /{iéa4/rl :*6£i.
4
; \/’

esls Advisor

'\—wxj L_t.w‘-

: / / L%/' Jecyd Reader

Chairman, ASW Aca&émlc Group
/ /Z?/w(

V}'Academic Dean

) e
Iw&- v, d T T e



| b By ati Vb AN P 1. jradindadNgy A D A B R il Iy
. SR - B Al b i S 08

ABSTRACT

NOAA-6 satellite AVHRR data and AXBT data were collected
in the Northeast Pacific Ocean in late 1980 as part of the
Naval Postgraduate School-sponsored Acoustic Storm Transfer
and Response Experiment which was in turn part of the U.S.-
Canadian Storm Transfer and Response Experiment (STREX). Some
of the problems in transferring AXBT geographical positions to
satellite images were solved by designing a computer program
with accuracies of less than 2 pixels. Thermal comparisons
were made between AXBT, NOAA-6, and GOSSTCOMP data with the 1

result that NOAA-6 data was on the average 2.9°C colder than

AXBT data and 3.2°C colder than GOSSTCOMP data. Linear regression
methods reduced to 0.3°C the difference between NOAA-6 and AXBT
data. Use of this method over a period of 15 days produced a
mean error of 0.5°C.

Although NOAA-6 cannot sense directly the subsurface thermal
structure, it is excellent for observing surface manifestations
’5? of horizontal thermal features. Further investigation into

using satellite data as the basis of an empirical relationship

s between the surface temperature and the subsurface vertical
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thermal structure is warranted.
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I. INTRODUCTION

The collection of oceanographic data has always been time
] consuming and expensive. With the development of environmental
1 satellites, a method for the rapid gathering of oceanographic
data was available to complement that data gathered on re-
search cruises. Unfortunately, there are still some problems
in using satellite data, such as the effects of the atmosphere
on the radiative transmission path and the effect of the geo-
metric distortion of thermal features found on poclar-orbiting
satellite images as from NOAA-6.

This thesis is part of a series of on-going studies at the

Naval Postgraduate School by the Department of Oceanography

Environmental Acoustic Research Group. The overall goal of

the Group is to continue the development of those aspects of
acoustical oceanography that have a significant effect on naval
tactical applications. In pursuit of this goal, the Group was
a participant in the joint U.S.-Canadian Storm Tranrsfer and
Response Experiment (STREX) held in the fall of 1980 in the
Northeast Pacific Ocean. The Group is particularly interested
in investigating whether or not satellites can fulfill the
role presently played by ships and,or air-dropped expendable
bathythermographs (AXBT) in gathering sea surface temperature
data for use in forecasting the ocean's thermal structure,

' using prccedures similar to those developed by the U.S. Naval

Qceanographic Office Antisubmar:ne Warfare Environmental




Prediction (ASWEPS) Program in the early 1960's. If direct
correlations could be found between satellite-derived sea sur-
face temperatures and the vertical thermal structure, then a
rapid method of surveying the world's oceans could result,
with numerous naval ramifications.

As a part of the experiment conducted by the Group under
the title Acoustic Storm Transfer and Response Experiment
(ASTREX), this thesis was directed toward the examination of
some of the problems in using satellites to observe the hori-
zontal and vertical thermal distributions in the waters of
the Northeast Pacific Ocean. Of particular interest was the
problem of locating open-ocean geographic positions (ship,
AXBT, etc.) on satellite images with as much accuracy as
possible. A major portion of this thesis is devoted to this
subject. 1If comparisons are to be made between satellite-
cbtained thermal values and ground-truth thermal values, then
an elimination of location errors between the two media makes
the results that much more significant. The reasons why NOAA-
6 satellite imagery is distorted and a method to eliminate any
location errors successfully are presented below. 1In addi-
tion, once location accuracty was assured, various meaningful
comparisons were macde between satellite, bathythermcgraph,
and GOSSTCOMP (Global Operational Sea Surface Temperature

Computation) data. The results of these comparisons are

also presented.




II. REMOTE SENSING IN OCEANOGRAPHIC RESEARCH

In 1870 and 1879 respectively, the authors Edward Everett
Hale and Jules Verne wrote about placing an artificial satellite
in orbit, Hale using a huge waterpowered flywheel and Verne
a gun of sufficient muzzle velocity (Corliss, 1967). Hale
envisioned the satellite as an aid to both navigation and
communication. Up until 1935, the idea of launching man into
space remained the ideas of small amateur organizations with
some notable exceptions, such as the efforts of Robert Goddard
in Auburn, Massachusetts, in the 1920's.

With the stirrings of war in Europe in the late 1930's,
the now infamous V-2 rockets were developed and launched from
Peenemuende by a team of German scientists including Wernher
von Braun. Captured en masse in 1945 by the Allies, this group
of scientists and their hardware were transferred to the United
States. The Army Air Force subsequently commissicned a study
by Rand Corporation, who reported in 1946 for the first time
that an earth-orbiting artificial satellite could be used
scientifically in the fields of meteorology, biocleogy, and com-
munications {(Corliss, 1967). This launched a nine-year effort
by lobbyists both inside and outside the government culminating
in President Eisenhower's announcement on 29 July 1955 that
the U.S. would launch an earth-orbiting scientific satellite

to investigate the environment. The Soviet Union announced

similar plans on the following day. October 4, 1957 saw the

|
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launch of Sputnik-I by Russia followed on 31 January 1958 by

the launch of the first U.S. satellite, Explorer-I. Since

that time, hundreds of scientific satellites have been launched
in order to investigate topics from numerous fields. One of
these, NOAA-6, was the satellite whose data were used on this
project. NOAA-6 is an earth—-orbiting, environment-sensing
spacecraft with applications in metecorology and oceanography.
This section reviews the use of satellites in oceanographic
studies, provides a description of the operation of NOAA-6,

and briefly summarizes the normal oceanographic conditions for
that region of the Northeast Pacific Ocean where the experi-

ment took place.

A. OCEANOGRAPHIC CHARACTERISTICS OF THE PROJECT AREA

The area chosen for this project encompassed that region
of the Northeast Pacific Ocean between latitudes 40 N and 50 N
and between longitudes 126 W and 139 W. See Figure 1. The
oceanographic conditions of this region have been extensively
studied by Tully (1961; 1964), Tabata (1964; 1965; 1978), and
Roden (1975) among others. The reader is referred to these
works for more detailed information as only a brief summary
of their findings is described below.

As seen in Figure 1, the project area is located mainly
in an oceanic water mass transitional region between the Sub-
arctic Water Mass, predominantly to the north of 45 N, and
the Pacific Equatorial Water Mass, predominantly to the south

of 23 N. The Subarctic Current flowing eastward along 45 N

20




Figure 1. Major surface currents and water masses of

the Northeast Pacific Ocean (after Kibblewhite
et al., 1977)
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latitude divides on the northwest side of the project area

into the Alaska Current, which circles counterclockwise to

the north along the Canadian and Alaska coastlines; and into
the California Current, which flows southward along the western
coast of the United States. Observations from the project area
would be expected to show the physical characteristics of the
Subarctic Water Mass; however, those observations in the
southern portion of the project area may be somewhat tempered
by the colder offshore waters of the California Current.

1. Thermal-Salinity Structure

An excess of precipitation over evaporation of approxi-
mately 25 cm/year (Tabata and Giovandeo, 1962) has helped to
create a layer of water extending to a depth of 100 meters in
the Subarctic Water Mass that is isohaline during the winter
menths. A permanent halocline extending from 100 to between
200 and 300 meters exists in which the salinity increases by
1l °%4o to approximately 33.8 °4, and marks the maximum limit
of seasonal effects (Tully, 1964).

The top of the permanent halocline at 100 meters also
marks the maximum depth of the seasonal thermocline. During
the summer, the thermocline forms between 25 and 50 meters,
influenced heavily by wind mixing effects alone. With the
coming of the fall and winter months with their intensive
storms, the surface waters begin to cool considerably and both
convection and wind mixing erode the thermocline until iso-
thermal conditions exist to the top of the permanent halocline.

This condition usually is reached by February at which point




the waters continue to cool until the end of March, when the

heating season begins. See Figure 2 for a general depiction
of the seasonal structure. Figures 3 and 4 show the expected
mean thermal structure for the project area for the months of
November and December. Figure 5 shows the annual surface
salinity maxima while Figures 6 and 7 show the expected layer
depths alsc for November and December.

Both the Subarctic Current and the California Current
have surface speeds less than one knot with volume transport
averaging 10 to 15 million cubic meters per second (Knauss,
1978). As a result, the water in the project area is exposed
to constant climatic conditions over many months and has suffi-
cient time to adjust to seasonal variations. During November
and December, there is an expected net heat loss in the pro-
ject area ranging up to 400 g-cal/cmz/day (Tabata, 1961l). This
heat loss is d.rectly responsible for the winter convective
mixing process mentioned above; therefore, the vertical thermal
structure is due more to the area's heat budget, storm cycle,
and salinity layers than to any influx of new water.

2. Internal Waves

Internal waves have been shown to cause amplitude
fluctuations of 4.5 to 5 meters at the level of the seasonal
thermocline in the Northeast Pacific Ocean (Tabata and Giovando,
1962). These oscillations may cause a periodic thickening of
the thermocline from 10 to 50 meters due to phase differentials
between the top and bottom of the thermocline (Tully, 1964).

These periodic fluctuations vary with depth as oscillations of




Figure 2. Seasonal oceanographic structure of the
Northeast Pacific Ocean (from Tully,
1964)
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Figure 5. Annual surface salinity of the project
area (from Robinson, 1976)
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Figure 6., November mean layer depth in project
area (from Robinson, 1976)
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Figure 7. December mean layer depth in project
area (from Robinson, 1976)
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isotherms at the level of the halocline are five times

greater than oscillations in the region of the thermocline.

3. Fronts and Eddies

The Subarctic Front, usually found between latitudes
40 N and 45 N, may be present in the center of this project
area. This front is characterized by the lack of a density
front in the upper 100 meters, by the region of the strongest
surface baroclinic flow being to the south of the surface
temperature and salinity fronts, and by the mixed layer depth
extending to the top of the halocline at 100 meters on its
northern edge (Roden, 1975). In the southern section of the
project area, eddy formation may be present in that area in-
fluenced by the California Current which has been described
as a relatively shallow meandering current with alternating

warm and cold tongues (Bernstein et al., 1977).

B. USE OF SATELLITES IN OCEAN THERMAL STUDIES

In 1968, a study was done comparing satellite-obtained sea
surface temperatures with monthly mean surface temperatures
with the result that the satellite values were anywhere from
3 to 8.3 degrees C lower than the mean (LaViolette and Chabot,
1968). The relative horizontal gradients observed in their
satellite data, however, were fairly consistent with similar
mean gradients from the historical data. Thié pattern of
satellite-obtained sea surface temperatures being lower than
the mean or the actually observed sea surface temperatures

persists until today, except that technological advances have




reduced the differences in temperature between the two sets
of data so they now are between 0.5 to 3.0 degrees C (Rao et
al., 1972; Brower et al., 1975; McMiilin, 1975; Cogan and
Willard, 1976; Barnett et al., 1977; Tabata and Gower, 1980).

Prior to 1972, the oceanographic use of satellite-obtained
sea surface temperature was severely limited by both the en-
gineering characteristics of the satellite radiometers and by
the environmental aspects causing atmospheric attenuation.
Large instantaneous fields-of-view (IFOV) limited the resolu-
tion capacity of the satellite and the large values for the
variations in the electronic signal (NE.T) causec spatial and
temporal errors, making it difficult to detect the gradients
associated with oceanic fronts (Legeckis, 1978).

Several methods were proposed tc remcve the atmosgher:ic
contaminaticn responsible for the majority of the difference
between satellite and observed sea surface temperature values.
The 3 to 8.3 degree difference found by LaViolette and Chabct
(1968) came from satellite data that were not corrected for
atmospheric attenuation, but in 19269 they developed a daily
averaging method to lessen its impact (LaViolette and Chabot,

1969). Vukovich (1971) developed a filtering technigue tc

accomplish the same purpose while Smith et al., (1370) used

a statistical method which, when compared with ship observa-
t.ons, had both bias and random errors oI iess than 1 degree
C using early NIMBUS satellite data. Mau. and Sidran (1972
investigated the effects of the atmcsphere, nadir angle, cloud

amount, cloud height, and random noise which resulted in a




theoretical error (2 degrees C) for the NOAA satellite series,
then soon to be launched.

In early 1970, NOAA launched ITOS~-1l which was the first
satellite in the NOAA series of satellites of which both NOAA-
6 and NOAA-~7 are now in orbit., 1In early 1970, NOAA-NESS be-
gan working on a satellite data processing model, to include
the effects of atmospheric attenuation, which was the prede-
cessor to the GOSSTCOMP (Global Operational Sea Surface Tempera-
ture Ccmputation) model (Brower et al., 1976). With the
launch of NOAA-2 in 1972, a more advanced radiometer was put
into use with an IFOV of about 1 kilometer and a much reduced
system NE.T of less than 3.0 degrees C (Legeckis, 1978). With
this improved system, sea surface temperature fronts could be
detected and monitored. Amcng the studies done during the
following few years were those of LaViolette (1974) on upwell-
ings off the west coast of Africa, Stumpf and Rao (1975) on
tracking eddies in the Gulf Stream, and Bernstein et al., (1977)
on the comparison of eddies in the California Current with
direct observations.,

By the mid-1970's NOAA-NESS had refined their satellite
data processing model; however, comparisons with observed data
by NOAA itself and by others found that the guality of measure-
ments varied with time and geographical area and were related
to the temperature gradient field; good correlation came from

regions of weak gradients and marginal results came from regions

of strong gradients (Brower et al., 1976). Klein (1979) found

that NCAA-3 sea surface temperatures in the Northeast Pacific
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Ocean that had been subjected to the GOSSTCOMP model were
biased 3.5 to 3.9 degrees C and suggested that the error was

a result of overcorrection by the model for atmospheric attenu-
ation., With the launching of TIROS-N in 1978, NOAA~NESS up-
dated GOSSTCOMP to take advantage of the Advanced Very High
Resolution Radiometer (AVHRR) on this, and on the follow-on
NOAA-6 and NOAA-7, satellites, Whereas NOAA-5 had a NE:T of

1 to 1.5 degrees C, the TIROS-N/NOAA A~G satellite series has

a NEAT of 0.12 degrees C (Schwalb, 1978). The improvement in
NEAT should result in a better correlation between observed

and satellite-derived sea surface temperatures. Chahine (1980)
suggested that an absolute accuracy of 1 degree C in these
differences could be obtained by simultaneous observations of
atmospheric and surface emissions with multi-channel radiometers,
using spectral regions of the 3.7 .m carbon dioxide windows as
the main sounding channel. An instrument to accomplish this
has yet to fly on a satellite.

1. Problems Associated with a Satellite Data Base

Briefly described below are three common problems asso-
ciated with using satellites in thermal studies. Atmospheric
attenuation is important when interpreting satellite-derived
temperatures, while location accuracy is important when ther-
mal comparisons are made between ship, satellite, and AXBT

data. The depth to which present-day radicmeters sense the

thermal structure concludes the section.




a. Atmospheric Attenuation

As will be described in detail in Section II.C.2,
data from the 10.5 to 1ll.5 um infrared channel on NOAA-6 were
used on this project. Radiation in this spectral region
emitted from the earth's surface or from cloud tops is attenu-
ated in its passage through the atmosphere to the radiometer.
The major contribution to this attenuation is water vapor which
can be responsible for up to a 9.0 degree C correction in the
satellite data (Brower et al., 1976). The amount of water
vapor in the atmosphere varies horizontally, vertically, and
in time with the least amount of absorption around the 9.5 to
10.5 .m region (Fett and Mitchell, 1977). Other absorbers and
their possible corrections are carbon dioxide (0.1 to 0.2
degrees), ozore (0.1 degrees), and aerosols (0.1 to 0.95 degrees).
Details on the physics of this absorption process can be found
in Roberts et al., (1976) and Weinreb ard Hill (1980).

Many atmospheric correction techniques have been
tried in an attempt to correct satellite data. Some of these
were discussed previously. A knowledge of the vertical mois-
ture field would help significantly in reducing the attenuation
effects but these data are not generally available. In any
case, the multispectral approach to this problem seems to offer
the best chance to reduce this type of error significantly
(Chahine, 1980; Deschamps and Phulpin, 1980).

b, Location Accuracy

A major porticn of this project was devoted to

locating geographic positicns correctly on satellite imagery.







layer. This layer is subject to the processes of net upward

heat flux, infrared and solar radiation, and turbulence with
the resulting temperature difference between the top and bottom
of this layer of up to 1.0 degrees C (Katsaros, 1980). Typical
radiometers sense only the radiation emitted from a depth of
about 50 .m.

Direct measurement by satellites of the deeper
vertical thermal structure is not possible with the instruments
carried onboard the satellites in orbit today. Technigues
using Raman lidar systems have been developed theoretically
and prctotvpes experimentally tested with reported accuracies
within 0.2 degrees C (theoretical best value) to depths of 30
meters (Leonard et al., 1979). Conclusions from this study
suggest that the structure to depths of 100 meters may be de-
tectable. The physics of the Raman spectra used in this pro-

cess can be found in Murphy and Bernstein (1972).

C. NOAA-6 OPERATION

The NOAA-6 satellite is the second satellite in a series
of thiré generation, polar-orbiting satellites that began with
the launch of TIROS-N on 13 October 1978 at the Air Force
Western Test Range, Vandenkberg Air Force Base, California. The
TIROS-N/NCAA A-G satellite series, of which NOAA-A became re-
designated NOAA~6 upon its successful launch, is a joint re-
search effort ¢f the United States, the United Kingdom, and
France and is operated by the National Environmental Satellite

Service of the National Oceanic and Atmospheric Administraticn
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(NOAA-NESS) under the U.S. Department of Commerce. The United

Kingdom provided one of the three sounding units onboard the
satellite, France supplied the onbocard data collection system
(DCS), the National Aeronautics and Space Administration (NASA)
funded the development and launch of TIROS-N, and NOAA supplied
the funds for the NOAA-6 satellite. The mission objective of
this satellite series that directly relates to this thesis is
the continuous monitoring of the environmental features in the
western hemisphere which is accomplished in conjunction with

a second satellite system, also operated by NOAA, the Geo-
stationary Operational Environmental Satellite (GOES) System.
It should be noted that TIROS-N ceased operation in late 1980. i
NOAA-6 was still functioning at the writing of this thesis and
NOAA-7 began operating in June 1981.

For the purposes of this project, only those spacecraft

systems that were extensively used or are important to the
understanding of the results are explained below. The reader
is referred to Schwalb (1978), Hussey (1979), Lauritson, et al.,

(1979), and ITT Aerospace (undated) for a fully detailed des-

cription of the many instruments onbcard NOAA-6. Sections of ;
these references, especially the works of Schwalb and Hussey,
were used extensively below.

1. The Spacecraft

NOAA-6 used an Atlas-F launch wvehicle which is a com-

paratively small rocket approximately 28 meters tall and

weighing about 600,000 kilograms. See Figure 8. The main Etody

of the rocket detaches after launch and a second stage solid i
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Figure 8. Atlas-F launch vehicle (from Hussey, 1979)
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rocket motor, an integral part of the NOAA-6 satellite itself,

burns until depletion putting the satellite into a nominal
833-kilometer orbit.
a. Physical Structure

The satellite itself, as shown in Figure 9, con-
sists of three sections. The Reaction Support Structure (RSS)
includes the injection motor mentioned above, the attitude
control propulsion system, and an ll1.6 sguare-meter solar cell
array. The Instrument Mounting Platform (IMP) includes the
attitude control sensors and the Advanced Very High Resolution
Radiometer (AVHRR). The five-sided central structure, lccated
between the RSS and the IMP, includes twelve thermal control
louvres and the earth-facing communications antennae. The
satellite is 3.71 meters long and 1.88 meters in diameter. Its
weight at launch was 1420 kilograms which reduced to 737 kilo-
grams once established in its orbit.

b. The Attitude Determinaticn and Control Subsystem
(ADACS)

When a satellite sensor, such as the AVHRR, scans

the surface of the earth, the attitude of the spacecraft 1is

extremely important in determining during data analysis just

where the sensor looked. Aany roll, pitch, cr vaw on the sat-

ellite will make the application cf scan geometry extremely
difficult and significant errors would result. Because of
this, the ADACS system was designed to maintain the attitucde
of the spacecraft to within 0.2 degrees (3-sigma) of the lccal

jeographic reference (Schwalb, 1978). This value is obtained

R
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through the use of three mutually-orthogonal torgue wheels
which receive input from the Earth Sensor Assembly (ESA) for
pitch and roll and, for yaw, an inertial reference source with
sun-sensor updates. The ESA is an infrared (IR) sensor that
views the entire earth and supplies torque input to keep the
earth centered between four independent detectors. The sun
sensor uses multiple data inputs from various mechanisms to
provide the yaw input.
c. Data Handling Subsystem

There are four primary components in the data
handling system onboard NOAA-6; the TIROS Information Processor
(TIP), the Manipulated Information Rate Processor (MIRP), the
Digital Tape Recorders (DTR), and the Cross Strap Unit (XSU).
All the information eventually received cn the ground from
NOAA-6 has to be processed by at least one of these four com-
ponents. Figure 10 is the data flow diagram for NOAA-~6; atten-
tion is drawn to the path followed by the AVHRR data via the
MIRP to the switching unit for subsegquent transmission at 0.66
megabits per second to the earth station antenna as real-time
High Resolution Picture Transmission (HRPT) data. The AVHRR-
HRPT data stream was the only one used on this project. An
explanation of the variocus other sensors shown in the diagram
can be found in Schwalb (1978).

The MIRP formats the AVHRR data and adds synchroni-
zation, identification, telemetry, and time code information.
.t senses a pulse at the start of each AVHRR scan line and

initiates a data sampling process that divides the arriving
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earth scan data into 2048 computer data words per scan line.
The pulse that is sensed at the initiation of each scan line
originates when the AVHRR scan mirror, which rotates at 360
RPM producing 6 scan lines per second, reaches a precise posi-
tion in its sweep just prior to scanning across the surface of
the earth. The data are stored in memory and then subsequently
3 read out at a rate suitable for the HRPT on a first-in first-
out basis. Any one of the 2048 data words or samples, along
with the number of the scan line on which it is located, de-
fines a pixel. Throughout this project, the term pixel will

be defined by the designation (scan line number,sample number)

or, in short, (NL,NS). A more comprehensive discussion of this
process can be found in Section III.B below.

2. NOAA-6 Onboard Sensors

There are three primary environmental sensors onboard
NOAA-6. The TIROS Operational Vertical Sounder (TOVS) con-
sists of the High Resolution Infrared Radiation Sounder (HIRS/
2) whose purpose is to provide data to allow calculation of
vertical temperature profiles and atmospheric water and ozone
concentrations, the Stratospheric Sounding Unit (SSU), and the
Microwave Sounding Unit (MSU). The second sensor, the Space
Environment Monitor (SEM), consists of a Total Energy Detector
(TED), the Medium Energy Proton and Electron Detector (MEPED),
and the High Energy Proton and Alpha Detector (HEPAD). The
last of the three systems, the AVHRR, was the sensor system
extensively used on this project and will be described 1in

detail below. For an in-depth discussion of the first two
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sensor systems mentioned above, the reader again is referred
to Schwalb (1978).

The AVHRR aboard NOAA-6 is a four-channel scanning
radiometer that is sensitive to energy in four regions of
the electromagnetic spectrum. Table 1 below is a summary
of NOAA-6 channelization.

Table 1
NOAA-6 AVHRR Channelization

(adapted from Schwalb, 1978)

CHANNEL WAVELENGTH (um) REGION PURPOSE

1 0.58 - 0.68 visible cloud coverage
land-water bound.
snow-ice extent

2 0.725 - 1.1 visible- as above
near-ir
3* 3.55 - 3.93 mid-ir sea surface temp.

cloud mapping
4 10.5 - 11.5 far-ir sea surface temp.
cloud mapping

*
On NOAA-6, channel 3 is very noisy and usually not used

An afocal 20.3 cm-aperture telescope, which produces
a field of view of 1.3 = 0.1 milliradians and an instantaneous
field of view (IFOV) ground resoclution of 1.1 kilometers at
nadir (Lauritson, et al., 1979), separates the radiant energy
into the four spectral regions with the help of secondary op-
tics. The radiant energy in each of these regions is then

focused on its respective detector. The quantity of energy




sensed by the detector then is converted to a count value from 0

to 255 in the format used for this project. Channel 4 was the

main channel from which information was gathered and it uses

a mercury cadmium teluride (HngTe) detector optimized for
best sensitivity between 10.5 and 11.4 micrometers (Schwalb,
1978). The spectral response curve for channel 4 is shown 1in
Figure 11. The noise equivalent differential temperature
(NEAT), a measure of the random or coherent two-dimensional
noise patterns superimposed on the data signal broadcast to
earth, is less than 0.12 degrees Kelvin at 300 degrees Kelvin.
Pre-launch AVHRR calibration is covered in a report
by ITT Aerospace (undated) and post-launch thermal calibration
of channel 4 is covered extensively in a report by Laurtison,
et al., (1979). For every scan line, the radiometer views deep
space (0 radiance) and then a blackbody target designed into
the radiometer housing and kept heated to 15 degrees centigracde.
To a first order approximation, the radiometer output is linear
with input energy (Schwalb, 1978) so a two-point linear cali-
bration, using the above values, is done during every scan
sequence. Channel 4 with its chdTe detector, however, has a
not-quite-linear response due to the physical properties of

the HgC T Lauritson, et al., (1979) have generated a table

de’
of errors for this channel, which represents the difference
between the actual target temperature and the temperature de-
rived from the two-point calibration. Table 2 is a summary of

these data. Note particularly the small errcrs around 285

degrees Kelvin, for this is the sea surface temperature range
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Figure 11.

curve (from Kidwell, 1979)
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determined by the AXBT drops. With this information, a table

of count-value-to-temperature conversions was generated for

the time of this project by NOAA-NESS and is included in

Appendix A.

Table 2

NOAA-6 AVHRR Channel 4 Nonlinearity Errors
(from Lauritson et al., 1979)

TARGET TEMPERATURE ERROR
(degrees K)

305 0.5

295 0.3

285 0.0

275 -0.4

265 -0.8

3. NOAA-6 Orbital Parameters

Because the development of the satellite data set was

so closely intertwined with the NOAA-~6 orbital parameters,

their discussion is included in Section III.B.3.c below.




ITII. DATA COLLECTION AND PROCESSING TECHNIQUES

The use of satellite data on any research topic intro-
duces extensive data processing problems, especially when one
considers that a typical NOAA-6 infrared satellite image con-
tains over nine million pieces of data. This section explains
the procedures used on this project to collect, process, and
analyze NOAA-6 satellite imagery with emphasis in the area
of geographic location accuracy. Also included in this sec-
tion are the procedures to collect and process the AXBT data

as well as the ccllection of the GOSSTCOMP product.

A. AXBT COLLECTION AND PROCESSING

As part of the data base for this project, a series of six
Navy P-3C aircraft flights were staged out of NAS Moffett Field,
California, for the purpose of dropping a pattern of bathyther-
mographic sonobuoys (AXBT). The dates of these flights were
15, 17, and 19 November and 1, 3, and 5 December 1980. These
flights were scheduled as part of the Naval Postgraduate 3chool's
research effort on behalf of the joint U.S.-Canadian Storm
Transfer and Response Experiment (STREX).

Eact of the nine-hour flights flew northwestward from Cage
Mendocino, California and proceeded to drop a series ci AXBT's
along a track 1333 kilometers (720 nm) long as shown in Figure

12. The spacing between the buoys was 55.6 kilcmeters (30 nm).

The first four £lights flew out and back on the center track

dropping AXBT's on positions 1 through 24. Flight 5 flew the
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Figure 12. AXBT patterns for the project area
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center track on the outbound leg and flew the southern track

on the return leg dropping AXBT's on positions 1 through 13

and 34 through 46. Flight 6 repeated the center track outbound
and flew the northern track inbound dropping AXBT's on positions
1 through 13 and 54 through 65. The northern and southern
return tracks were designed to gather data on the horizontal
thermal structure and were offset 11l kilometers (60 nm)

either side paralleling the center track.

The complete navigation suite of the P-3C was used in cal-
culating the position of each of the deployed AXBT's. At the
end of each flight, the cumulative error of the inertial navi-
gation system was checked and recorded. For the flights whose
data were selected for the project, this error was less than
4 nautical miles.

Also important to note is the procedure that the P-3C on-
board computer uses to calculate the splash points of the de-

ployed AXBT's. Upon releasing the AXBT from the aircraft, the

computer ballistics program uses the calculated wind speed

and wind direction from the navigation system to provide a
trajectory for the first 2000 feet of fall. After this 2000
feet of fall, the ballistics program assumes a straight descent

to the water. This entry point becomes the so-called splash

point for which geographical coordinates are calculated and
displayed to the flight crews. Most of the AXBT's were dropped

from an altitude of 2000 feet except when low clouds or icing

cenditions prevented f£lying at that altitude. It was felt




that the location error associated with the few high altitude

drops was within the 4 nm aircraft navigation error.

1. The Air-Dropped Expendable Bathythermograph (AXBT)

The AXBT is an air-dropped expendable bathythermo-
graph transmitter set deployed by Navy P-3C and S-3A aircraft.
Its purpose 1s to provide an accurate profile of the vertical
thermal structure from the ocean's "surface" to about 350
meters. Upon water entry, a seawater battery activates, power-
ing a VHF transmitter, and approximately 30 seconds later a
temperature probe begins a £ foot/second descent (Sparton
Electronics, 1976). The temperature probe and accompanying
electronics within the sonobuoy package translate the sensed
water temperature into a fregquency brcadcast by the radio trans-

mitter using the formula

frequency = 800 + 20(temperature deg. F.).

This low-power broadcast from the sonocbuoy is intercepted by
the aircraft where it i1s electronically recorded on specially
processed paper in real-time.

The accuracy of this process is governed by the accuracy

of the thermal probe on the sonobuoy and this is claimed to be

within 1.0 degrees C by the manufacturer (Sparton Electrcnics,

1976). Reports in the literature place the repeatable accuracy

to within 0.2 degrees (Barnett et al., 1979). The detailed
workings of this type of AXBT is described in Sessions and
Wilson (1976) although the bucy described in their work was

supplied by a different manufacturer.
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It is also important to note that the temperature probe

does not start at the surface of the ocean but begins its
descent from a depth of about 0.2 meters (Barnett et al., 1979).
The probe itself also may be subject to very low temperatures

1f the aircraft transports the buoys at a high altitude for

a long period of time before deployment or if the buoys them-
selves are dropped from a high altitude. Both Navy aircraft
described above have systems designed to prevent the freeze-up
of the sonobuoys, and altitude launch restrictions do apply

for the deployment of this buoy.

2. AXBT Data Processing

The thermal profiles were recorded using two different
methods. As described abcve, the P-3C-produced paper copy of
the thermal profile was used with a plastic overlay to read
off the temperature for any depth. These readings were then
transferred to paper logs by hand. The accuracy of this method
is within the accuracy limits of the AXBT itself.

The second method involved the use of an AXBT-digitizer
provided by the University of Hawaii and which was used also
in the NORPAX Experiments. This piece of egquipment was de-
signed specifically to be used onboard the P-3C aircraft during
£lights. It connects into the equipment that receives the
signal broadcast from the AXBT and digitally records on mag-
netic tape the signal representing the thermal profile at one
second intervals. These tapes then are aralyzed on a ccmputer
and various outputs prcduced. Figure 13 is an example cf a

group of AXBT prcfiles porcduced by this system. Figures 14 and

ul
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15 show two additional products, a depth-of-isotherm summary
and a listing of the temperature at 5 meter intervals for
each AXBT. The accuracy of this system is also within the

accuracy limits of the AXBT.

It should be noted also that the AXBT~digitizer had
provisions for recording the raw received signal from the
AXBT onto an analog tape recorder. These tapes then were
used during the analysis phase as a direct input to the
AXBT-digitizer in order to verify questionable temperature

profiles.

B. SATELLITE DATA SET SELECTION AND PROCESSING

The decision criteria used to determine which satellite
passes to examine were reviewed in the following order:

(1) the satellite pass coverage had to include the ocean
area where the AXBT's were dropped;

(2) the time of the satellite pass should be as close as
possible to the time when the AXBT's were dropped;

(3) the ocean areas containing the AXBT's should be rela-
tively cloud-£free; and

(4) there had to be at least one clearly identifiable
landmark somewhere on the full satellite image.

Two outside government facilities were used in additicn to ﬁ

the facilities at the Naval Postgraduate Schocl iIn order to

choose satellite passes which met these decision criteria.
1. NOAA-NESS

The facilities of %the Satellite Field Services Staticn

of the National Oceanic and Atmospheric Administration's National
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Environmental Satellite Service (NOAA-NESS) in Redwood City,
California, were used in initially selecting the satellite
passes. The Redwood City facility is one of three NOAA-NESS
stations that monitor NOAA-6; the other two are the Command
and Data Acquisition (CDA) stations in Gilmore Creek, Alaska,
and Wallops Island, Virginia. Redwood City differs from the
CDA stations in that Redwood City records the digital High
Resolution Picture Transmission (HRPT) readout consisting of
three channels of AVHRR data in the 8-bit precision field-
station format. These 1600 BPI, 9-track computer-compatible
magnetic tapes then are archived in Redwood City on a 90-day
rotating basis. The CDA stations record the various other
data formats broadcast from NCAA-6 as well as recording the
HRPT data in 10-bit precision which then are forwarded to the
NOAA Suitland, Maryland, facility where processing and archiv-
ing on a more permanent basis occur. The precision loss in
going frcom the 10-bit HRPT data to the 8-bit HRPT data is
between 0.4 and 0.5 degrees when making thermal comparisons
{Kidwell, 1979). The amount of data recorded per satellite
pass depends on the satellite's elevation in relation to the
receiving station antenna and can be limited by the 1l3-minute
capacity of a standard length magnetic tape. Passing directly
over Redwood City's antenna, NOAA-6 would be within reception
range for 15.5 minutes, depending on orbital altitude, and
could oprovide data from a circular area 6200 kilometers in
diameter centered on the antenna (Schwalb, 1978). According

to Schwalb, the satellite provides useful data only if it is




at least five degrees above the horizon. This reduces the

contact time to 13 minutes and the circular area to 5200
kilometers.

a. Field-Station Format

The field-station format differs from the CDA-

station format in that it is a combination ASCII~-Binary format
consisting of a single header record at the beginning of the
tape followed by up to 15000 data records. Each of the data
records is a sequential interleavening of the scan lines and

the recorded channels as shown in Table 3 below:

Table 3

Field-Station Format

RECORD CONTENTS

1 header

2 scan line 1~-AVHRR channel A

3 scan line 1--AVHRR channel B

4 scan line 1-~-AVHRR channel C

5 scan line 2~-AVHRR channel A
14998 scan line 5000--AVHRR channel A
14999 scan line 5000--AVHRR channel B
15000 scan line 5000--AVHRR channel C

channel A, B, or C = any sequence of channels 1, 2, 2, 4




The 40-byte header record, all in ASCII, contains
the ground station identification (SFO for Redwood City), the
channel numbers identifying which three of the four available
AVHRR channels were recorded, the time (GMT) of the first scan
line, the duration of the pass, and the orbit number. See

Figure 16 for an example of the header record. Each of the

remaining 15000 or so data records have identical 2138-byte
formats beginning with a l4-byte ASCII "mini-header" consisting
of an identification sequence, the specific AVHRR channel num-
ber from which the data in the record originated, the Julian
date of the scan line, and the time (GMT) of the scan line.
Following the "mini-header® are 10 bytes of telemetry data,
6 bytes of back scan data, 10 bytes of space view data, and
50 bytes of space data, all in binary format. The remaining
2048 bytes, also in binary, are the video data from which esti-
mates of the sea-surface temperature are derived. See Figure
17 for an example of one of these data records.
b. Ephemeris Data Set

A set of ephemeris data for NQAA-6 also is main-
tained at Redwood City. An ephemeris data set consists of
tracking information so that the field station can capture the
satellite's data stream as the satellite rises above the hori-
zon and passes overhead to the opposite horizon. See Figure
18 and Figure 19 for examples of an ephemeris data set. More
importantly to this project, the ephemeris also contains the
subsatellite points for the pass calculated at one minute

intervals. A subsatellite point is that point on the earth's
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Figure 16

Header record--field-station format

(adapted from Kidwell,

WORD BYTE CONTENTS BYTE
1 1 station ID 2
2 3 station ID 4
3 5 blank 6
4 7 channel B 8
5 9 hours 10
6 11 minutes 12
7 13 seconds 14
8 15 duration-min 16
9 17 duration-sec 18

10 19 orbit 20

11 21 orbit 22

12 23 orbit 24

13-20 25-40 blank

1979)
CONTENTS
station ID
blank
channel A
channel C
hours
minutes
seconds
duration-min
duration-sec
orbit

orbit

blank

TYPE

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

channel A, B, or C = channel 1, 2, 3, or 4

As an example, a pass selected for the proiject may have a

header record as follows:

SFO 1340333481200 7244

indicating a Redwood City tape (SFO) containing AVHRR channels

1, 3, and 4. Time of the first scan line was 03 hours 33

minutes and 48 seconds (GMT) while the duration of the pass

recorded was 13 minutes and 00 seconds.

7244,

The orbit number was




WORD

13-15

16-20

21-45

46-

Figure 17

Data record--field-station format

BYTE

11
13

15-24

25-30

31-490

41-90

91-2138

(adapted from Kidwell,

CONTENTS

ID

ID

channel no.
day

hours
minutes
seconds

telemetry data
(average)

back scan data
(average)

space view data
(average)

space data
(raw)

video

BYTE
2

4

10
12

14

1979)

CONTENTS

ID

ID

day
day
hours
minutes

seconds

TYPE

ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII

Binary

Binary

Binary

Binary

Binarv
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surface directly beneath the spacecraft and represents the
middle of the scan line for the AVHRR. All the subsatellite
points for each scan line taken together represent the ground
track that the satellite followed in its orbit. It should be
noted that any alignment errors made when the AVHRR module was
attached to the spacecraft during construction may result in
the subsatellite point not being the center of the AVHRR scan
line. A summary of alignment data may be found in an undated
report prepared by ITT Aerospace for NASA. For the purposes
of this project it was decided that any alignment errors were
so slight as to be negligible and therefore that the sub-
satellite point would represent the center of each AVHERR scan
line. Other information in the ephemeris data set important
to this project were the orbital elements listed in the preface
to each ephemeris including orbital period, semi-major axis,
eccentricity, and inclination. This information was vital to
the orbital calculations made further on in this project and
will be explained there.
c¢. Initial Satellite Pass Selection

Each AVHRR scan line is approximately 2840 kilom-
eters long with 1420 kilometers on each side of the subsatellite
point. With this information as well as the ephemeris data
sets for the dates of the P3-C flights and a chart of the
Northeast Pacific Ocean, it was relatively easy to determine

specific passes which viewed the ocean areas where the AXBT's

were dropped, *thus satisfyving the first decision criterion




mentioned above. Twenty-two satellite passes were thus

selected for further screening.

The selection from these 22 passes of orbits whose
time matched as closely as possible the time of the AXBT drops
was done in conjunction with the investigation cf cloud cover-
age over the ocean area of interest. As the project relied
solely on the use of the infrared channels cf the AVHRR and
because cloud cover effectively prevents AVHRR scan coverage
of the ocean surface, the absence of cloud cover in the ocean
area of interest was a major factor in pass selection. Also,
as will be discussed below, NOAA~6 is a sun-synchronous satellite
i that circles the earth 14.2 times every 24 hours. As a result,
NOAA-6 views the same earth location at the same local sun
time each day. This translated to our ocean area of interest
as between 0330 and 0400 (GMT) Zfor ascending passes and between
1650 and 1720 (GMT) for descending passes. Since Redwood City
maintains hourly pictures taken from the visual channels of
the geostationary GOES-WEST satellite, examination of these
pictures for cloud coverage in the ocean area of interest re-
sulted in the selection of one pass for each of the six flight
dates that represented the best compromise between matching

times and cloud coverage. The six passes chosen for further

examination are listed in Table 4 below. |

2. NASA-Ames Research Center

The last criterion to be satisfied, identificaticn of

a landmark on each image, was done on the Interactive Digital

Iimage Manipulation System (IDIMS) lccated at the Technology




Table 4

Selected Satellite Passes

AIRCRAFT PROJ. AXBT DROP ORBIT ORBIT TYPE
FLIGHT NO. TIMES (DTG) NO. TIMES (DTG) PASS

15 Nov 80 1 151905-160049 7209 151658-151711 D
17 Nov 80 2 171932-~180236 7244 180331-180346 A
13 Nov 80 3 191843-192232 7266 191712-191716 D
01 Dec 8¢ 4 011826-020031 7429 010344-010358 A
03 Dec 80 5 031826-040127 7465 031656-031710 D
05 Dec 80 6 051816-06G013 7486 050355-050408 A

where D = descending and A = ascending

Applications Branch of the Airborne Missions and Applications
Division under the Director of Astronautics, NASA Ames Re-
search Center, Moffet Field, California.
a. 1IDIMS

The IDIMS system is a software package that inter-
acts with a minicomputer (HP-3000), a display terminal, a 25~
inch COMTAL display screen, a Dunn Instruments color camera
recorder, and a high~speed printer, and is used extensively
to work with satellite data, especially LANDSAT imagery. Op-
tions are available that allow the user to manipulate inter-
actively satellite imagery so that specific topics of interest
may be investigated like land use with LANDSAT data, sea surface
temperature, cloud cover, or ice pack ccverage as examples Irom

TIRCS~-NCAA imagery or the manv other applications available

rn

rem NIMBUS-7 imagery. The mechanics behind specific options
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are proprietary data owned bv Electromagnetic Systems Labora-
tory, Inc. (ESL) of Sunnyvale, California, who developed IDIMS
and to whom the reader ics referred for more detailed information
(ESL, Inc., 1978). A second IDIMS system is located at the
Scripps Institution of Oceancography in La Jolla, California,
where initial training was done by the author in the use of the
IDIMS system. A third IDIMS system, also operated by NASA Ames,
is located in a mobile van that tcurs the Western United States;
its facilities were used upon one of its stops at the Naval
Postgraduate School.

b. Landmark Identification

The basic procedure for landmark identification
used by this project on the IDIMS system was as follows:

(1) run a short tape routine on each of the se-
lected pass’'s magnetic tapes to identify the number of data
records, hence the number of scan lines per pass {(number cf
data records minus 1 header record, &ll divided kv 3);

(2) read the 3-channel AVHRR data from the magnetic
tape into computer memory and initiate IDIMS processing;

(3) recall that data ccmprising the infrared
channel from memory and display it on the COMTAL display
screen;

(4) enhance the displayed infrared imagery fIcr
temperature using false colors;

{3) use the Dunn color camera recorder to zrecuce
an 8 by l0-inch color Polarocid ghotograph of the enhanced

image;




(6) use the ZOOM option of IDIMS to enlarge se-

lected sections of the displayed image in order to locate
landmark pixels by scan line number and sample number; and
finally,

(7) use the PICPRINT option cf IDIMS to dump to
the high-speed printer the count values of all pixels within
a specified area surrocunding the landmark.

An explanation of certain aspects of this procedure
is explained in the sections below.

(1) Count Values. In order to display a satellite

image on the COMTAL display screen, the IDIMS system seguen-
tially unpacks the video data read into memory from the

magnetic tape. These data consist of count values between ¢

and 255 which represent the difference in detected energy be-
tween a look at deep space and a lock at a radiating surface
such as the earth or clouds (Schwalb, 1978). These count
values are used by the IDIMS system to produce an image with

a grey=-scale intensity range from 0 to 255 in order to match
the same range of count values. Options availakle on the IDIMS
system allow various colcr assignments based on these count
values including an automatic full-spectrum £false color assign-
ment where red is "hot" and blue is "cold" or vice versa. Alsc
availekle are options allowing a single colocr to vary in its
saturation over the full count range of 256 values or the
assignment of a specific color to an individual count as
"blue=ccunt 125" or to a range of counts as "blue=counts 1Z53

tarough 130". Assigning colors in this manner terds to produce
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a confusing image if many hues are used indiscriminantly.
For purposes of this project, the autcmatic full-spectrum
false color assignment of red "cold" and blue "hot" was used

so that the oceans were blue and the cloud tops, being much

colder, were red in all the photographs.
c. Pixel Identificaticn

The identification of a landmark pixel and the
subsequent assignment of a scan line number ancd sample number
are made easy by the IDIMS system but the principles behind
their assignment had to be understood so that other landmarks |
and buoy positions could be located as needed later on in the
project.

As seen in Table 4 above, three of the six selected
NOAA-6 passes were ascending passes and three were descending
passes. An ascending pass 1s one where the satellite in its
orbit crosses the earth's equator nheading northwards while a
descending pass 1is one where the satellite crosses the equator
heading southwards. As the satellite is moving, the AVHERR
scan mirror sweeps from right to left perpendicularly across
the satellite's velocity vector six times per second with each
sweep defining a single scan line. Although the scanning
mirror rotates in a complete circle, only the data located
33.4 degrees either side of nadir is retained. YNadir is a term
similar in meaning to the subsatellite point in that nadir
represents that point on the sweep ©f the scanning mirror
when the mirror is pointed at the sgct on the earth's surface

directly underneath the spacecraft. The radicmeter data
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stream from this 110.8-degree arc is electronically divided

by the MIRP into 2048 equal samples each representing 0.054
degrees of the total arc (110.8 divided by 2048). Therefore,
when the satellite transmits its data stream to the earth
receiving station, the first 2048 bytes of video data taken
together is intrinsically labeled scan line number 1 while the
first byte is intrinsically labeled sample number 1 or, as

used throughout this project, (1,1). The second byte of the
first scan line is labeled (1,2). Sample number 1505 from

scan line number 3520 would be labeled (3520,1505). Sample
number 1 through 1024 are located to the right of the sub-
satellite point when looking in the direction of the satellite's
velocity vector while samples 1025 through 2048 are to the left.
Because of this right-to-left pixel numbering system, when an
image is displayed on the COMTAL unit by the IDIMS system, an
ascending pass image looks reversed and upside down while a
descending pass image looks normal where normal is defined as
having Alaska to the ncorth or top of the image, Hawaii to the
west or left of the image, and California to the east or right
of the image. An ascending pass image, when displaved on a
display screen or when stored into computer memory for further
processing, has Alaska on the bottom, Hawaii on the right, and
California on the left of the image. This cccurs because IDIMS
always displays pixel (1,l) in the upper left corner of the
COMTAL unit. Although Ilandmark identification can be easily
done cn either type of pass, the gecmetry invoclved further con

in this project rests heavily cn a clear uncderstanding cof which




type of pass you are analyzing and on which side of the sub-

satellite point is the landmark or buoy. Figure 20 is an

example of an ascending pass while Figure 21 is an example of
a descending pass. In each figure, the satellite would travel
directly up or down the center of the image respectively.

The IDIMS system automatically keeps track of this
numbering system and conveniently displays the scan line num-
ber, sample number, and count value for the pixel you have
identified on the COMTAL unit using a movable cursor. By use
cf the ZCOM feature on IDIMS and with reference to a chart of
the local area, it is usually easy to identify landmarks. 1In

L most of the passes used on this project, the San Francisco Bay

Area was identified readily and its (scan line number, sample
number) determined. For purposes described later on, up to
20 landmarks per satellite pass along the west coast cf <he
United States from Glacier Bay, Alaska, south to Mexico and
from San Franciscoc east to Pyramid Lake, Nevada, were identi-
fied. Only ocne of these landmarks is needed to navigate the
image as will be explained later on.

The PICPRINT feature of IDIMS allcwed the dumping
to a high-speed printer of the count values of the pixels sur-
rounding the landmark. This was dcne as a method of veriZving

the accurate position of the feature chosen for landmark iden-

tification. Figure 22 is an example of a PICPRINT output where
‘ , by using a variation of the game cf connecting the dots cne
can connect count values in order to recognize features. This

method of verification will not work, or is made more difficules,




Figure 20. NCAA-6 ascending pass, £from IDIMS processintg
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1f the temperature of the land is the same as the water, if
any low-lying clouds (fog) have similar temperatures as either
the water or land, or if clouds obscure sections of the land.
Normally, the visual channels of the spacecraft are used but
since many of the passes occurred at night, only the infrared
channels were usable. Figure 23 is an example of a case

where clouds interfered with the landmark identification
process.

Because an average pass contained 4680 scan lines
each with 2048 samples or about 9.6 million pixels per pass,
a convenient method cf matching pixel numbers (hence count
values) to AXBT positions was necessary; thus a system was
needed to "navigate" the image.

3. Satellite Image Navigation

As mentioned in the introduction, there are many sources
of error when one wants to compare satellite-derived sea sur-
face temperatures and AXBT-derived sea surface temperatures.
It was decided at the beginning of this project that an at-
tempt would be made to reduce as much as possible one of
these, that being the earth locaticn errors associated with
transferring AXBT drop positions to a satellite image, so that
remperature comparisons could be made. Several methods were
tried and three of those methcds that produced the smallest
errors are described below. For the purposes of developing
prccedures for locating AXBT's on the satellite image only,

an assumption was made that the gecographical locaticn of :the

AXBT's was accurate; hence any aircraft navigaticn errors,

P Y g




Figure 23.

Francisco Bay entrance;

PICPRINT output of count values, San

cloud-covered

image. (Note: This image 1is from an
ascending pass hence it appears upside
down. )
131 128 125 124 125 124 131 121 122 123 125 125 229
130 130 1209 120 119 120 13247113
1232 125 + SAN FRANCISCO 15 113 112 1127717 114
1295 126 124 122 121 113 113 113 112 117 147 116 113
TITE 25 125 123 123 1322 121 39 -ttgmaT>T15 114 112
127 71223 127 735 127229 122 113 118 114 113 112
130 129 127 125 125 125 1237 12U LLRLIT 11T 11 514
124 134 132 122 125 72577712F 125 123 130T T NG,
120 130 130 122 127 928 127 126 126 137 127 125 123
135,132 130 123 127 Y8~ 127 126 126 130 130 129 125
(S2 33T g TN 131 M T0 129 122 131 132 131 129
135 15w O7 134 13379327130 129 123 132 134 134 531
141 1° 134 130 123 130 130 127 122 132 131 131
143 O 133 T334 133 134 133 129 123 132 135 134
146 146 144 141 1:}’ 138 137 136 132 132 135 134 133
149 147 144 142773 135 133 1323 el
154 152 143 s-;ﬁ 133 135 132 132 MARIN COUNTY -,
156 1352-442-~"43 143 140 136 132 132 132 134 137 135
154 (52 180~ 39447 140 133 136 134 135 134 1324 134
149 143 _J42_197 148 1394 141 133 1326 140 141 137 333
149 442 13 %—ket 141 143 142 141 132 137 1328 137
149 146 142 1323 130 128 133 140 146 146 t94 141 133
143 %42 140 137 132 130 130 133 1332 143 142 147 149
135 136 136 137 137 135 123 132 132 134 136 132 139
127 128 123 130 131 134 135 134 134 133 133 133 132




ballistic errors on the falling AXBT's conce launched from the
alrcraft, drift errors on the floating AXBT, or human errors
1n transcribing positional data from aircraft displays to logs
were i1gnored. These sources of error will be discussed later.

a. Zoom Transfer Scope

A Bausch and Lcomb Zoom Transfer Scope was used

initially in an attempt to transfer the AXBT positions to
the satell:ite image. A zoom transfer scope allows one opti-
cally to overlay a chart, on which the AXBT positions have
been plotted, onto a satellite image where enough distinguish-
1ng features (landmarks) are evident so that by optically
stretching, condensing, or rotating the chart, landmarks on
both chart and image coincide. Once the landmarks coincide,
the operator manually marks with a pencil the AXBT positions
onto the satellite 1mage. Wwhile the svstem works fine with
small area images consisting mostly of land, it could not b
used satisfactorily on thils prolect for a number of reascns.
First, each of the selected NOAA-H rasses covered an area ex-
tending from Northern Mexico to Alaska and m mid-Pacific
to the western United States. Reducina Jie cf this area
to a size sultable for use on a zoom %“ransfer scope (about 10
o2v 10 1inches; necessarily requires reducticn in the accuracy
of olctting geographical ccordinates. Second, on each of the
NCAA-6 passes, arpreximately 80 to 90 percent of the coverage
area was open ccean with any visible landmass only cn the =2dge

of the mage. Landmasses on the edges of these images are

much mcre distorted than landmasses near the subsatellite

7
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points due to a combination of satellite scan geometry, earth
curvature, and the transfer of these images to a flat medium
like a photeograph or chart. Third, the AXBT's were dropped
along a line over 1300 kilometers long stretching northwestard
from Cape Mendocino, California. There are no landmarks in
the Northeast Pacific Ocean between Cape Mendocino and the
Aleutians; therefore location accuracy decreased the farther
away from the coast the AXBT's were dropped. Fourth, marking
a chart manually with a pencil necessarily involves inaccura-
cies especially when one is trying to locate geographically
an item as small as an AXBT. Last, and the hardest to over-
come, 1s that once the buoy position is marked on the satellite
image, some method must be found to determine the pixel number
and hence the count values of the AXBT's position. Remember-
ing that there are 9.6 million pixels per image, determining
the exact pixel to choose for a count value would involve some
guesswork and possibly even large-scale pixel averaging.
Satellite images unfortunately do not come marked with latitude
and longitudes, nor do charts contain scan line numbers and
sample numbers.

b, 1IDIM's TRNSFORM

A second methcd of trying to locate an AXBT on

the satellite image involved the use of an ESL, Inc-developed
IDIMS function called TRMSFCRM. TRNSFORM is used mainly in
registering LANDSAT imagery and involves the calculation of a
transformaticn matrix between matching sets of control pecints

using a least-sguares it methcd (ESL, Inc., 1978,. A firsct,
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second, or third order transformation is possible. TRNSFORM

was not designed to navigate NOAA-6 imagery mainly because {

TRNSFORM requires 15 to 20 landmarks spread over the entire
image in order to obtain a small pixel error. Therefore, use
of this function also failed to provide the accuracy desired
for this project for one of the same reasons that the zcom
transfer scope failed, in that landmasses were present only
on the edges of the images.

The method finally used, and from which a location
accuracy of less than 2 pixels resulted, was the development
of a computer program that determined a satellite's orbit
! referenced to a single landmark in the image and from this,

when given an AXBT latitude and longitude, could determine the

scan line number and sample number of the AXBT. The development
of the program reguired a basic understanding of the orbital
dvnamics of NOCAA-6 as well as a working knowledge cf spheri-
cal geometry.
c. NOAA-6 Crbital Dynamics

For orbital information in this section, the work
by Stewart (1979) and Schwalb (1978) was used extensivelv.

The NOAA-6 satellite is a sun-synchronous sateilite

which means that its orbital plane rctates at the same rats

as the rotation of the earth about the sun. As a resul:t, the
. ' satellite views a rzoint on the Earth's surface at the same
local sun time each dayv. Table 4 above listed thcse times
that NOAA-6 viewed +the AXBT drop area. Accerding to Schwalib

{1978), the orbital zlane precessicn rate 1s approximately




degrees per

egqual to 0.J3000C0199 radians per second or 0,986

day eastwards. Thils rate 1s achieved by placing the satellite

in an orbit with a suitable inclination. In the case of the
NOAA-o satellite, the inclination was determined prior to
launch to be 98.739 - 0.15 degrees, where inclination (i) is

defined as the angle the satellite's orbital plane makes with
the earth's equatcorial plane measured counterclockwise from
is the supplement of

east. A retrograde inclination (i_)

the inclination. See Figure 24,

Figure 24

NOAA~6 orbital plane inclination

north pole

earth’s
equatorial
plane

satellite’s
orbital
plane

1 = inclinaticn {(from =2rhemeris)

i = retrograde inclinaticn

The period of the satellite, cbtainable Zrcom the

aphemeris data set (as 1s the inclination), i1s +the amcunt of

~ime 1% -axes %he satellii+e o make cne orbit of the Zar=zh.
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The predetermined launch value for the NOAA-6 period was 101.58
minutes; therefore, NOAA-6 orbits the Earth 14.18 times per 24
hours. For each orbit the earth rotates 25.40 degrees east-

ward. See Table 5 for a summary of NCAA-6 orbital parameters.

Table 5

NOAA-6 Orbital Parameters

orbital plane precession rate 0.986 deg/day east
inclination (i) 98.739 = 0.15 deg
retrograde inclination (1) 81.261 = 0.15 deg
period 101.58 minurtes
orbits per day 14.16

earth rotation per orbit 25.40 degrees east
orbital altitude 833 =z 18.5 km

The predetermined launch altitude of the satelli:ice
was 333 = 18.5 kilcmeters. The orbit of NCAZ-6, to a first
approximation, is an ellipse. rfrom the ephemeris data set
the semi-major axis of the ellipse and its eccentricity can
be fcund, thus making the satellite's al*itude on any pass
simple to calculate as shown in Figure 23 belcw. The mean
satellite altitude {H) 1s that distance measured {rom the
center of the Earth and can be derived using Eguation (1).

Using the above orbital infcrmation, the data in
Table o belcow was derived fcr “he six selected NCAA-6 rasses

used In this prosect.




Figure 25

Satellite Altitude Determination

D+
earth
apogee a / .
pogee. 3 \ -perigee
~ satellite
a = semi-major axis (from ephemeris) in nm
e = eccentricity (from ephemeris)
, . . . 2.,1/2
b = semi-minor axis = a((l-e7)] /
H = mean satellite altitude = (2Zb+a)/3 (Eg. 1)
‘ Takle 6
|
4
‘ Satellite Data Set Orbital Parameters
/
!T 209 YA 7266k 7429 T.A3 LAk
PARAMETER _
2
inclination ( degrees) 98.69708  98.69708  98.69708  98.69123  98.69123  98.59123
retrograde inclination  81.30292  81.30292 31,30°92  31.30877 81.30877  91.30877
seriod (minutes) 101.13285 101.13285 101.13285 101.13084 101.13084 101.13084
seai-major axis (km) 7185.4875 T185.4875 7185.4875 7199.1856 7199.1856 7199,1856
accentricity }.001187  0.201187  0,J01187  0.000603  0.000603  0,000603
mean satellite altitude 7185,4841 7185.4841 7185.4341 7199.1847 7199.1847 7199.1847




The reascn that the orbital parameters are not
constant for each pass i1s that the satellite is sublect to
many forces that tend to cause its orbit toc vary. The largest

of these forces is the fact that the =artn .s not a perfect

—

sphere but an oblate spneroid. King-Hele (%%3) and Brouwer
(1959) developed mathematical solutions :c Zescribe this per-
turbation whose primary effects on the 2roit include changing
the orbital plane precessicn rate and changing the period. A
secondary influencing factor is the effect of atmospheric

drag on the satellite which acts to change the eccentricity
and is a function of the satellite's altitude. A third influ-
ence 1s the effect of solar wind and radiation. It should

be noted that during 1980, the Internaticnal Solar Maximum

Year, solar flare and sunspot activity reached some of the

nighest levels recorded (Ponte, 198l1). Lesser influences in-
clucde the gravitational effects of the sun and the moon on H
the satellite.
d. Computer Navigation Program
The main computer navigation program was developed
under the follcwing premise: given the orbital parameters of
NOAA-5, the latitude and longitude of an AXBT, and a satellite

image upcen which cne landmark has been identified as to (scan

. Line number, sample number) and latitude and longitude, calcu-

late -he (scan line number, sample number) of the AXBT so that
the zcunt value, hence the sea surface temperature, of that

—ixel can be iden=iIied readily eilther on IDIMS or any other




computer system. Procedural methods were outlined by Mueller
(1981).

(1) Preliminary Programs. Three preliminary com-

puter programs were designed to be run on the IBM 3033, The
first program, SCANLINE, was a simple block counter that counted
the number of data records on each magnetic tape. The number
of data records minus the header record divided by 3 gives the
total number of scan lines per pass. The program listing can
be found in Appendix B. The second program, TAPEDUMP, was a
routine designed to dump from the magnetic tape any number of
bytes per data record and to translate their ASCII-Binarv for-
mats into decimal notation. This program was used to verify
that there were indeed six scan lines per second and its

listing can be found in Appendix C. The third program, AREAMAP,
was designed to function in a manner similar to the IDIMS'
PICPRINT function in that it would extract from the magnetic
tape the count values of a selected grouping of pixels arcund
the landmark or AXBT pixel. This program was used to verify
landmark locations and to determine the surface thermal struc-
ture arounid the position of the AXBT. Its listing can be

found in Appendix D.

{2) Common Case Geometrv. In the development of

the main computer program, it was necessary to consider Ifour
cases in the process of predicting an AXBT pixel. These four
cases are:

(a) an ascending pass where the landmark

nas a sample number greater than 1024 (Case 1):;
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{(b) an ascending pass where the landmark

has a sample number less than or equal to 1024 (Case 2);

(c) a descending pass where the landmark
has a sample number greater than 1024 (Case 3); and

(d}) a descending pass where the landmark
has a sample number less than or equal to 1024 (Case 4).

Common to each of these four cases was the
assumption of a spherical earth with a radius equal to the
earth's radius at the landmark latitude. This local radius

can be calculated using Eguation (2)

2 .2
X - cos (Lo) . sin (Lo) -1/2 = 2
(3443.925) © (3432.381) =q-
where:
R = local earth radius in nm
Lo = landmark latitude in degrees.

Also common tec all four cases were the calcu-
lations to determine the great circle distance between the
subsatellite point and the pixel containing the landmark.
These calculations refer to Figure 26 below.

These calculations are made »cssible under
the assumptions that the subsatellite point is directly be-
neath the satellite on the earth's surface, that the scanning

nirror of the AVHRR forms a scan line perpendicular to the

K¢

satellite’s velocity vector, and that the earth is a perlect

sphere.
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Figure 26

Determination of great circle distances

H
subsatellite point

landmark
pixel

earth's/ center

[}

where: H mean satellite altitude from Eg. 1

R = local earth radius £from Eg. 2
%s = scan angle

Dg = great circle distance

5; = geocentric angle

= zenith angle

-
|

e}

Determination of the scan angle (%S) in degrees
assumes an egual division of the arc viewed by the radicmeter

{110.8 degrees) into 2048 samples, thus

(landmark sample-1024) (110.8/2048) if sample - 1024

(l025-landmark sample) (110.3/2048) 1f sample - 1024

The zenith angle (-_) in degrees now can be found:
B
-1 (R+H) (sin rs)
T sin *{ 3 ]




The geocentric angle (éq) in degrees is found from Equation

(3).
2 = 3 = = (Eg. 3)

If desired, the geocentric angle in degrees can be expressed
as the great circle distance in nautical miles from Eguation

(4) .
> = 60 3 (Eq. 4)

(3) Units and Notation. Because the IBM 3033

and the Fortran computer language were used heavily during
this project, all angles were converted to or used in radians.
Teble 7 lists the common conversion factors used. Notations
on all figures included in this project were designed to have
the same definition whenever possible so comparisons could be

made between the four cases.

Table 7

Program Conversions

45 degrees = % radians = (8)([(tan 1(1.0 radians)]
any angle in radians = (same angig in ceg;ees)(,/4)
any geccentric angle in
radians expressed as a _ 45 . .
great circle distance =/4 (geocentric angle) (€0)

in nautical miles

1 nautical mile = 1.825 kxilometers




(4) Nodal and Subsatellite Point Calculations.

The main program, LOCATE, is divided into two sections. The
first section calculates the orbital characteristics referenced
to the previously-identified landmark. The desired output is
the time and longitude of the ascending or descending node.
Their calculation is dependent on the four cases enumerated
above and described in detail below. Once the time and longi-
tude are known, the second part of the program can proceed to
calculate the pixel number for an AXBT. To begin, the calcu-
lation of the ascending or descending node and time follows
for each of the four cases.

Case 1. Ascending pass with landmark sample number greater

than 1024.

The derivation of orbital characteristics
referenced to a single landmark in Case 1 made use of Figure
27 below.

At time equal 0, the satellite is directly
over the subsatellite point that has an unknown latitude (LS)
and longitude (\S). The only known guantities are that the
scan line that includes the subsatellite point also includes
the landmark with known latitude (Lo); lorngitude (\o); and
frem IDIMS, a known scan line number (NL); and sample number
(NS). From the ephemeris data set for this pass, the inclina-
tion (and hence retrograde inclination (i_)) and the period
are known. From Equation (3) or (4), the great circle dis-
tance ag is known. The gocal of this orbital set of calcula-

tions is to find the latitude and longitude cf the subsatellite




Figure 27

Case l--orbital characteristics

satellite ~—
ground track

north pole

point, the longitude of the ascending node (lan) and

ot
.
e
o

time of the ascending node.

By using similar triangles and the Law of

Sines, the angle (:) can be determined as follows:
. in = 1
frem triangle I Si = - ;
sin L sin :
o o}
: sin (i -z 1
from triangle II e ) =+
sin sin >
o]
hence o tan-l sin 1.
! - sin -
—*——ri + cos 1
sin L -
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From triangle I

sin L

_ .o=1 o}

3 = sin [ ————
o] sin -

]

From triangle ITI, the distance over which the satellite
travelled between the ascending node and the subsatellite

point is

Finally the latitude of the subsatellite point (LS) can be
determined using Equation (5) and triangle III

L, = sin™! [sin(i_)sin(: )] . (Eq. 5)

For the moment, the rotation of the Earth is ignored, so the
change in longitude at the equator between the landmark longi-
tude (ko) and the fixed ascending node lcngitude (lin--where
the "f" indicates a £fixed or non-rotating earth derived term)

can be found by solving triangle I as follows:

The change in longitude at the equator between the subsatellite
point and the fixed ascending node longitude can also be found

from triangle III

90

FSE




Now, the longitude of the subsatellite point (=s) can be

calculated easily using Equation (6)

A - ia) . (Eg. 6)

To account for the earth's rotation during the time the
satellite traveled from the ascending node to the subsatellite
point, the longitude change due to rotation (;lr) is calculated
and subtracted from the fixed ascending node longitude as

follows:

<
t

|

.t (seconds) = (period in seconds) , (E

Q
~}

o
a

-—. - -

where .t is the time the satellite took to travel between the
1 1
_; ascending node and the subsatellite point. Continuing,
Y
3 = 22(1.002738) (ot (Eg. 8)
2 ' ““r 24 ¢ - e
where 1.002738 is the sidereal day correction factor. Finally, !
£
= - - Eg. 9
{ an an T or (Eq. 9
P 9.




The time of the ascending node can be found by subtracting the
.t in seconds from the landmark time in seconds. Landmark
time can be read £from the magnetic tape using the tape dump
orogram mentioned above to dump the data record containing
tae scan line of the landmark.
Case 2. Ascending pass with landmark sample number less
than or equal to 1024.

The orbital calculations for this case are
very similar to those of Case 1 and have the same goals. Figure
23 shows the geometry applicable in this case. As in Case 1,
the known values are the great circle distance :g from Egua-
tions 3 or 4 and the landmark's latitude (LO), longitude (lo),

and the scan line number and sample number (NL,NS).

Figure 28

Case 2--orbital characteristics

north pole

satellite A
ground track

/

subsatellite point
\

(LS:Asl 1
3
scan line {
L H
.
\\\‘\
vator - A
equat As Ao an
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Using spherical triangles I and 1I, the angle

(:) can be determined as follows:

. sSin l. +
from triangle I S ) = 1 :
sin L sin
o o}
- 4 sin = 1
from triangle II : = - —
sin : sin

therefore, eguating the two equations and solving for : vields

-1 sin i_
: = tan STh T .
sin -~ cos i_
g
Continuing with triangle II
_, sin :
.= sinTl—9)

and the distance the satellite travels from the ascending
nocde longitude te the subsatellite point of the landmark's

scan line (. also can be found by

)

From spherical triangle III, the latitude cf the subsatellite

point can be found using EZguaticn 10
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The change in longitude between the longitude of the ascend-
ing node and the longitude of the subsatellite point now can

be found from triangle III, ignoring the earth's rotation.

tan L
S

t
1
—

[-
1]
Q
O
w

‘an (sin 1_) (tan ;t)] )

The angle (.) from triangle III is

-y sin oo

. an
x = sin T[

sin T ]

which can be used in triangle IV to find the change in longi-

tude between the subsatellite point and the landmark (. ):

(cos 1) (sin : )

. —l Sy bl
A = sin [ .
! ‘ cos L !
o}
The longitude of the subsatellite point (‘S) ncw is found
using Eguation 11
| = B + . (Ec. 11;
S o}

The fixed earth ascending node longitude :is

‘an ‘s ‘an :

Using Egquations (7) and (8) from Case 1 tc dezermine the

degrees cf longitude <hrough which the earth turns

{1
o
A
]
V3
Ve
1
‘e
0]

(a3

~ime the satellite travels Zrcm the ascending ncde
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subsatellite point (;~r), the ascending node longitude an’

can be found using Eguation (9). The time ¢f the ascending

node 1s found exactly as in Case 1.

Case 3. Descending pass with the landmark samrle number

greater than 1024.

The case for the descendinc pass 1s slightly

different from the ascending pass cases in that the satsllite

is rtravelling frcm north to south. The goals and the xncwn
factors are identical with the ascending pass cases. Figure

29 below pertains to the spherical ceometry applicable in th:

P i

s

case. Note that the ascending node becomes the descendin

aad
Z

node (dn) in descending pass calculations.

Figure 29

Case 3--orbital characteristics

north pole

satellite
ground track

= scan line
1*

VR

subsatellite point
Lo Ay

fandmarnk
(S

; Lo )
!
— o /
A DT equator
an A Al
As o
- A?\gn———q




AD=A111 005  NAVAL POSTSRADUATE SCHOOL MONTEREY ¢ F/6 8/10
XD‘WIAMWIC Dl'ﬁ SATHERINS? SM PROBLEMS IN USING REMO==EYC(U.
l . LY

LASSIFIED
O
Bt oh




I T T e e v

The calculations for this case are exactly

the same as those for Case 1 with some exceptions as noted
below. The fixed earth change in longitude between the land-
mark longitude and the descending node longitude (Axgn) can
be determined from

) _1 COos ¢
A,\gn = Loy (Eq. 13) ,

The change in longitude between the subsatellite point longi- ;
tude and the descending pass longitude (Ax) can be fuund from
triangle III

-1

cos ¢
Ax = cos | t]

cos Ls

The longitude of the subsatellite point (ﬂs) can be determined

from Equation 14

rg = odg t (Akgn - AX) (Eq. 14)
and the fixed earth descending node longitude now also can be

determined

£ . . £
‘dan = ‘o ¥ *'an
Using Equations (7) and (8), the degrees of longitude through

which the earth turns while the satellite travels between the

subsatellite point and the descending node can be determined

(3i,), and from this the rotating earth descending node u




longitude can be found using Equation (15)

A = A AL . (Eq. 15)

The time of the descending node now can be determined by
adding the time calculated in Equation (7) to the landmark
time.

Case 4. Descending pass with landmark sample number less

than or equal to 1024.
In this final case, the goals and the known

quantities are the same as in the other cases described above.
Figure 30 is used to describe the geometry associated with

this case.

Figure 30
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The calculations for this case are exactly
the same as those for Case 2 with some exceptions as noted
below. The distance the satellite travels from the subsatellite

point to the descending node, der becomes

T —"

-1 €GOS ¢,

by T COS [cos Qg]

The latitude of the subsatellite point, Ls' now can be found

using Equation (16) as follows:

L, = sin L[ (sin i_) (sin )] (Eq. 16)

The fixec earth change in longitude between the landmark

longitude and the descending node longitude, axgn, now can
be found by
cos
B -1 o
A,\dn = COCs [COS Lo] ’

and the change in longitude between the subsatellite point
longitude and the descending pass longitude, ::, can be found
from triangle III

_y COS o
AN = cCOS l[ t

]

cos L
s

The longitude for the subsatellite point, Yoo is now found

using Equation 17

A = \ - (ar - _\.\dn) ) (Eq' 17}
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Again, using Equations (7) and (8), earth rotation is con-
sidered now, with the rotating earth descending node longitude

described by Equation (18)

I
\dn = /\dn + A,\r . (Eq. 18)
The time of the descending pass is determined by adding the

time calculated in Equation 7 to the landmark time.

(5) Buoy Pixel Identification. With the calcu-

lation of the time and longitude of the ascending or descend-
ing node, the second part of the program can proceed to calculate
the (NL,NS) of the AXBT. The previous set of calculations
referenced the orbital characteristics to the landmark pixel
(remember pixel = (NL,NS)). The geographical relationship
between the latitudes and longitudes of the landmark and the
AXBT are known so the purpose of the remaining part of the
program is to transform this geographical relationship into
satellite image coordinates of (NL,NS). Besides the guanti-
ties calculated above, the only other known guantity is that
the AXBT has a unigque (NL,NS).

As a first guess, any arbitrary scan line can

be chosen to be the "true" scan line containing the AXBT. One )

of the 2048 samples along the "true" scan line could be the
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sample number of the AXBT. The aim of the calculations below
is to prove or disprove, geometrically, that the arbitrary
scan line is the true AXBT scan line and, once the true scan
line is selected correctly, to calculate the correct sample
number.

The procedure to determine the time that the
satellite recorded the scan line containing the landmark was
described above. Since the time of the ascending or descend-
ing node was calculated in the earlier part of the main pro-
gram, subtracting the two times describes the satellite flight
time between the particular node and the subsatellite point of
the landmark scan line. The assumption was made earlier that
the satellite's orbit can be considered circular with a mean
altitude (H) and that the period of the satellite was the
amount of time it takes the satellite to complete one orbit;
then the flight time between the node and the landmark scan
line can be described as a great circle distance in radians by

N - 2n(flight time)

s period : (Eq. 19)

Another assumption was made earlier, which was proved by using
one of the preliminary computer programs described above, that
the satellite records six scan lines per second. Combining
these factors, it is simple to determine the difference in
scan lines between the landmark scan line and the first-guess,
arbitrarily-chosen scan line; divide by 6 to get the time

difference between the two scan lines; either add to (ascending

passes) or subtract (descending passes) this time difference
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from the flight time; and use Equation (19) to determine the
distance between the particular node and the subsatellite point
of the arbitrarily-chosen scan line. The latitude and longi-~
tude of this subsatellite point now can be determined using
spherical triangles.
Assuming that the arbitrary scan line is very

close to the true AXBT scan line, the next step is to find
the correct sample number along this line. Beginning with
sample number 1, and then taking every 89th sample (1,90,179,
...,1959,2048) the distance between the subsatellite point
and the center of the pixel can be found using Equations (1)
through (4) for each of the 24 sample numbers. With this
distance it is possible to calculate the latitude and longitude
of the center of each of these 24 samples by using one of the
four cases described below.

Case 1. Ascending pass with sample number greater than 1024.

This case uses the geometry of Figure 31. The

angle (:z) can be found easily by

-1 cos i.
e = cos [E-a"s——L—s] ; (Eg. 20)
from which
i, = cos™ll(cos L)) (sin &)1 . (Eq. 21)

The distance, in radians, of 5g can be found by using

101

it s, s Lo imgaprlobmi e




.

- —— e - -

Figure 31

Case l--pixel determination
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?g T sin [s—in_i_] ; (Eqg.

hence the latitude of the possible AXBT position (Lp) can

be calculated

_ .o=1 . _ L
Lp = sin [(31n(@S ¢g))(51n 15)]
The angles (v) and (Axp) now can be determined by
cos i
_ .o=1 ]
Yy = sin [cos Lo] '

22)




-1 (sin v) (sin og)
Axp = sin 7| <53 Ls

]

thus the longitude of the possible AXBT position (Ap) is

determined simply by

Case 2. Ascending pass with sample number less than or
equal to 1024.

Case 2 geometry uses Figure 32.

Figure 32

Case 2--pixel determination
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The angles (e¢) and (is) and the distance (;s)
are found using Equations (20), (21), and (22) respectively.

The latitude of the possible AXBT position becomes

IS o
Lp = gin [sxn(¢s + ¢g) 51n(ls)]

The angle (Axp) now is found by

. -1 (sin €) (sin 391

A\ = sgin [ 1,

cos L
P P
and therefore the longitude of the possible position is {
X = A - AA
p s

Case 3. Descending pass with sample number greater than

1024,

Lo Case 3, although using Figure 33 for its
{ geometry, uses exactly the same eqguations as in Case 1 with.

the exception that the longitude of the possible AXBT position

is found by




Figure 33

Case 3--pixel determination
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Case 4. Descending pass with sample number less than or
equal to 1024.
Case 4, although Figure 34 represents its
geometry, uses exactly the same equations as in Case 2 with
the exception that the longitude of the possible AXBT posi-

tion is found by

In addition to calculating latitude and

longitude for each of these 24 samples along the arbitrary

scan line, it also is necessary to calculate the great cirxcle
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Figure 34

Case 4--pixel determination
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distance (d) between the AXBT geographical position and those

of the 24 samples using Eguations 23

_ -1 . . Lo ,
d = cos “[(sin L,sin Lp)+ (cos Lbcos Lp)cos(\p \b)], (Eq.
where:
; Lb = true AXBT latitude
‘ ', = true AXBT longitude (Eg. 23)

By taking the sample number that has the

smallest of these great circle distances, creating a bracket

T ST e e 5 YT BRI -

23)




89 samples wide on either side of this center sample, and pro-
ceeding as before through the appropriate case number for each
of the 180 samples in this bracket, the sample that has the
shortest great circle distance between itself and the AXBT
position can be selected. The reason for the wide bracket

1s to allow for earth rotation and curvature whose effects are
especially noticeable on the edges of the satellite image. If
as before, we assume that we had a scan line very close to

the true AXBT scan line, a 10 by 10 pixel "square" box is
created around the sample with the smallest great circle dis-
tance. In reality, this box is not perfectly square due to
the curvature of the earth and the motion of the satellite
during the scan sequence. Those boxes near the subsatellite
point would be more perfectly "square" than those boxes on the
edges cof the image.

The scan lines on the top and bottom of the
box as well as the samples on each of the four corners are
subjected to the same calculations described above to find
the latitude and longitude of each of the samples on the four
corners. The geometry of this box is shown in Figure 35.

The calculations to find the (NL,NS) of the
AXBT begins with finding the change in the latitudes and

longitudes with respect to the changes in the sample and scan

line numbers.

’




] Figure 35

Box geometry

where Li = latitude of sample on i-th corner
Ny longitude of sample on i-th corner
Lgri = latitude and longitude of the sample
° having the smallest great circle dist.
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Continuing, two intermediate equations are required

L 3 53X . .
A = (xp \l) + TINST {sample A) +3TﬁfT (scan line x);

w
i

(Lp-Ll) + 3%§§T (sample A) +3%§37 (scan line x).

Finally, determination of the (NL,NS) of the AXBT can be

made
A _ B
NL = 22Z3(NS) " SL/3(NS) i
5x7/5(NL) _ 5L/3(NL) '
51/3 (NS) 3L/5 (NS)
A _ 3)/3 (NL)
NSO et sy (R

Rarely will the arbitrary scan line chosen
as a first guess be close to the true scan line of the AXBT.
In this case, after the great circle distances have been calcu-
lated between the initial 24 samples and the AXBT position, and
the "square" box has been set up, a check is made to see how
"small" is the smallest great circle distance. As described
earlier, the satellite follows a ground track as it travels
poleward that cuts across meridians of latitude at an angle set
up by its inclination. This means that scan lines are not
oriented east-west along degrees of longitude but are oriented
northwest-southeast (descending pass) or northeast-southwest
(ascending pass) crossing many degrees of longitude and lati-

tude. The check involves comparing the latitude of the AXBT
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with the latitudes Lc and Ld as shown on Figure 35 above. 1If
the arbitrary scan line is very close to the true AXBT scan
line, for ascending passes, latitude Lc will be south of the
AXBT latitude while latitude Ld will be north of the AXBT
latitude. The reverse is true for descending passes. If

the arbitrary scan line is far away from the true AXBT scan
line, both L, and Ld will be either north or south of the AXBT
latitude. 1In this case, the smallest great circle distance
is converted to an integral number of scan lines which are
added to or subtracted from the first-guess arbitrary scan
line number depending on whether Lc and Ly were both south or
north of the AXBT's latitude respectively. The jump to a new
scan line initiates the entire procedure again beginning with
the steps necessary to calculate Equation (19). This jump
process terminates when the number of scan lines to be Jjumped
is 5 or less at which time the boxing procedure begins with
the eventual determination of the AXBT's (NL,NS).

The main program, whose listing may be found
in Appendix E, was initially set up to be run interactively on
a display terminal. The program was used to locate all the
AXBT's that were dropped from the P-3C., Verification of the
accuracy of the program was done by selecting 15 to 20 land-
marks per image and asking the program to predict the (NL,NS)

even though they were known already from the IDIMS system.

Results of this verification will be discussed below in Section

IV.A.




C. GOSSTCOMP

The GOSSTCOMP sea surface temperature charts were obtained
for the period of this project from NOAA-NESS. These charts
are produced on a weekly basis by NOAA-NESS using procedures
outlined by Brower et al., (1976) and since updated to take

advantage of the AVHRR on NOAA-6.




-

IVv. RESULTS

A, NAVIGATION ACCURACY

A major effort was made on this project in an attempt to
reduce the effects of geometric distortion associated with
locating landmarks or open-ocean positions on satellite imagery.
Previously published works with earth location errors in ex-
cess of 10 kilometers at nadir were suitable for regional
location and analysis of mesoscale features; however, it was
believed that accurate comparisons of thermal data were signi-
ficant only if the products being compared were co-located in
the same geographical position. The location of thermal
features is especially important in naval tactical applications.
If a submarine were taking advantage of the unique acoustical
properties of an eddy or ocean front, then acoustical prosecu-
tion by the opposing forces would be more successful if the
sensors employed by this group were located so as to take
advantage of the tihermal feature also. If pre-missicn informa-
tion mislocated the edge of the front or eddy due to the
geometric distortion inherent in satellite imagery, then the
results could be disastrous to one of the parties. Ultimately,
any error in sensor placement could prove disastrous whether
caused by satellite imagery or not; part of the purpcse of
this project was to make the location error as small as possible.

Using the main computer program, the (NL,NS) of each AXBT

was predicted. The error in this prediction was determined

to be within 2 pixels of the true AXBT (NL,NS). The procedure
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to verify this accuracy began with the identification of the
(NL,NS) of up to 20 landmarks on each satellite image. Each
of the landmarks then was treated like an AXBT and its 7eo-

graphical coordinates were input to the computer to see what

the program would predict for each landmark's (NL,NS). These
predictions then were compared to the IDIMS-determined
(NL,NS), and the separations in pixels were determined. The

results are summarized in Table 8 below.

Table 8

Statistical Summary of Navigation Accuracy

SCAN LINE ERROR

mean 1l.32 scan lines
standard deviation 0.93 scan lines
99% confidence level 0.88-1.90 scan lines

SAMPLE ERROR
mean 1.35 samples
standard deviation 1.17 samples

99% confidence level 0.81-1.90 samples

The conclusion drawn £rom this statistical summary was

that the predicted AXBT (NL,NS) is within 2 pixels of the true

AXBT (NL,NS). Because of earth curvature, pixels close to
nadir are not as wide as those out on the edges of the image.
Sample number 1 and 2048, on the right and left edge of the
image respectively, are 4.3 kilometers wide whereas sample

number 1024 and 1025, located tc the right and left of nadir




respectively, are only 0.77 kilometers wide. As a result,

the 2-pixel error can be as small as 1.9 kilometers, if the
predicted (NL,NS) is at nadir; or as large as 10.7 kilometers,
if the predicted (NL,NS) is at the edge of the image. Table

9 lists the navigation error associated with selected sample
numbers. Notice that the error is not linear with distance
from nadir but is less than 5 kilometers over 80% of the
image and less than 3 kilometers over 50% of the image. Only
on the outer 10% of the image does the error balloon from 4.8

to 10.7 kilometers.

Table 9

Navigation Errors Associated with a 2-Pixel Error

SAMPLE NUMBER ERROR (km)

1 10.7
200 4.8
400 3.0
600 2.5
800 2.0
1024 1.9
1200 2.0
1400 2.3
1600 3.0
1800 4.3
2048 10.7
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There are some other sources of navigation error that

should be kept in mind when using data developed by this method.
Alignment of the AVHRR module during its assembly prior to
launch could be the source of constant offset error. This
type of error was described previously in this paper; analy-
sis of the navigation results did not show any consistent off-
set bias that could be attributed to module alignment errors.
Through the process of verifying the 2-pixel accuracy,
many landmarks were identified on the IDIMS system as explained
above. The data from NOAA-6 infrared channel number 4 were
used for landmark identification and their use could introduce
errors in assignment of the (NL,NS). These errors arise from
trying to identify'landmarks whose surface temperature may
not be very different from the surrounding surfaces. This
effect would become even more pronocunced if ground fog were
present. When selecting these landmarks, the best contrast
was effected by land-water boundaries, examples of which were
Point Lobos west of Monterey, the San Francisco Bay entrance,
Alcatraz Island, Point Reyes, the Columbia River mouth, Lake
Tahoe, and Glacier Bay among others. Many possible landmarks
were not considered if there were insufficient contrast to
identify the feature. A good example of this was the Seattle-
Tacoma-Olympia area where the numerous bays and tributaries
had surface temperatures close to land temperatures, thus
making it very difficult to distinguish a specific pixel as

being some peninsula or promontaory.
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A third source of error involved the number of signifi-

cant figures used in the mathematics of this project. Single-

s o —

bit precision was used during computer processing. Although

this may have had an effect after numerous computations (the
average program run to calculate 24 AXBT positions per image
executed 475,000 statements), it was felt that the number of
significant figures was more critical. An example of this was

the determination of decimal geographical coordinates. The

navigation system on the P-3C supplied the computer-calculated

coordinates of the AXBT's to seconds of latitude or longitude.

r One second of latitude error is equal to 0.1 kilometers,

which in itself is not so large; however, most landmarks were
identified using charts with scales of 1:2,000,000. After
determination of the coordinates, a decimal conversion to three

decimal places was completed., If errors in this procedure

were compounded by weak land-water contrast on the infrared
image used for landmark identification, it could contribute
significantly to the 2-pixel error.

A fourth source of error has to do with the resolution of
the AVHRR itself. As discussed earlier, the 1.1 kilometer
resolution would necessarily make it difficult to identify
something like the Transamerica Building in downtown San

Francisco. An example of where this could be a contributing

factor to the 2-pixel error would be in using the most western

point of Point Reyes. 1If the scan sequence is such that the

radiometer dcoes not resolve this point, then the first pixel

it does identify as being land would be to the east of the
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point. The user of the satellite image would have a very
difficult time in trying to determine whether or not this has
occurred. As a result, the user would assign the geographi-
cal coordinates of the most western point, introducing a 1l-
pixel error immediately before any computer processing begins.
It is felt that if landmark's could be identified using sharper
land~water contrast or using a visible channel vice the infra-
red channel if it is available, and if geographical coordinates
could be assigned with greater accuracy, the majority of the
2-pixel bias would be eliminated.

Another error to be considered is that the satellite may
not be perfectly stable in its orbit. It is likely that small
amounts of pitch, roll, or yaw occur from time to time although
the ADACS system was designed to kXeep these attitudes to a
minimum.

The last error to be discussed is the use of several assump~-
tions made during this project. The Earth was assumed to be
spherical and although the radius was calculated to be that
radius at the latitude of the landmark, a small error will be
introduced in calculations involving the earth radius term at
the latitude of the buoys. Similar small errors arise with
the assumptions made concerning the satellite orbit during
scan line calculations, and with the calculation of the mean
altitude of the satellite above the earth's surface.

In conclusion, it is believed that the 2-pixel error found
on this project could be reduced further to sub-pixel accura-

cies if some of the errors described above were eliminated

-
-
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or refined. Since the development of LOCATE, a program using
most of the same techniques as LOCATE has been developed to
predict the geographical coordinates of open ocean images

with similar accuracies (Mueller, 1981).

B. THERMAL COMPARISONS

1. Horizontal Distribution

As usually can be expected when satellite-derived sea
surface temperatures that are uncorrected for atmospheric
attenuation are compared with AXBT values of sea surface
temperature, the satellite temperatures were colder than the
AXBT data by a mean difference of 2.9 degrees C. Table 10
lists the mean temperature difference values and the corres-
ponding standard deviations for this and following comparisons.
Figures 36, 37, 38, and 39 show sea surface temperature com-
parisons of this and other methods to be described below along
the buoy line. The majority of the 2,9-degree error can be
attributed to the effects of the intervening atmosphere be-
tween the ocean's surface and the satellite radiometer. Cloud
contamination of the satellite values was not considered a
major factor due to the screening process that went into se-
lecting the data. Out of the six satellite passes selected
for study at the beginning of this project, only three met the
full requirements that were required for processing. Two of
the passes were not considered due to scattered clouds over
enough buoy positions to make any comparisons useless and one

pass was not considered because it contained no clearly
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Temperature

COMPARISONS

satellite vs. AXBT
17 November
01 December
05 December

overall

satellite vs. GOSSTCOMP

17 November
01 December
05 December

overall

GOSSTCOMP vs. AXBT

17 November
01 December
05 December

overall

Table 10

Comparison Statistics

MEAN (C) STANDARD

DEVIATION
-3.0 0.5
-2.6 0.4
-3.0 0.6
-2.9 0.5
-2.0 0.9
-3.2 0.6
-4.3 0.9
-3.2 1.1
-0.7 0.7
0.5 0.6
1.2 0.6
0.3 1.0




Figure 36. Sea surface temperature comparisons,
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Figure 37. Sea surface temperature comparisons,
1 December 1980, center track
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Figure 38, Sea surface temperature comparisons,
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Figure 39. Sea surface temperature comparisons,
5 December 1980, northern track
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identifiable landmarks. Passes selected for complete pro-
cessing were 17 November, 1 and 5 December 1980. From perscnal
observations onboard the P-3C during AXBT deployment, it was
noted also that there was no ground fog to interfere with
satellite measurements of the AXBT positions. The time
difference of one, three, and three hours between the last
buoy drop and the satellite £flyover for 17 November, 1 and

5 December, respectively, probably is not a factor as the
lowest and highest mean error values were found on 1 and 5
December with 17 November having an intermediate value. 1If
there were a correlation, one would expect 17 November to have
the smallest error but this was not the case. The transient
warming of the surface waters during the afternoon, the so-
called afternoon effect, did not occur due to the weather
conditions during the three-week oroject period; hence, this
process also was ruled out as a source of the error. Con-
stant wind speeds in excess of 20 knots from the south on 17
November, in excess of 25 knots from the northeast on 1 Decem-
ber, and in excess of 15 knots from the westnorthwest on 5
December (National Weather Service, 1980a) along the buoy

line kept the surface waters under constant wind-mixing condi-
tions. In addition to the winds, ship observations of the

sea state at the northern end of the buoy pattern found four
to ten foot swell and two %o six foot waves. These turbulent
mixing conditions are diametrically opposed to the formation

of the afternoon effect (James, 1966).
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A method of "field-calibrating" the satellite data to
eliminate the effects of the atmosphere was suggested by
Tabata and Gower (1989). Using a simple linear regression
technique, they plotted numerous ship-obtained surface tempera-
tures versus satellite count values and found that over a
limited area and a limited time period between satellite and
ship observations (1.5 days), the error between satellite and
ship values could be reduced to 0.5 degrees C. This tech-
nigque was tried using the data from this project. 2an absolute
mean difference of 0.3 degrees (s = 0.2 degrees) was found
between satellite and AXBT values. The time period between
satellite and AXBT observations was three to eight hours.

Flight crews usually will not have the luxury of ex-
pending 24 AXBT's on a tactical mission however, so the linear
regression technique was tried using only two buoys. The
rationale behind using two buoys was that this is the number
of AXBT's usually carried on both $~3A and P-3 aircraft. Addi-
tionally, a scenario could exist whereby a satellite photo
obtained prior to the flight could pinpoint two sections of
the tactical operating area where thermal differences exist
and those two locations could be designated for AXBT deployment.
The point is to try and get a spread in temperature between
the two AXBT's. Using the two-buoy method, the data from AXBT
positions 1 and 13 on 1 December were used for the linear re-
gression. Predictions of temperatures from count values found
a mean difference error of 0.3 degrees (s = 0.3 degrees), the

same value found using the 24-bucy methcd. When this same
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regression formula with constants calculated from 1 December
data was used to predict 5 December (4 days later) and 17
November (15 days earlier) temperatures, mean errors of 0.5
degrees (s = 0.3 degrees) and 0.4 degrees (s = 0.3 degrees),
respectively, resulted. Although examination of all possible
cases would be necessary before conclusive results could be
stated, these preliminary estimates indicate that it should
be possible to use two AXBT's and an infrared satellite image
tc predict sea surface temperatures within 0.5 degrees for at
least two days after the original satellite pass, a prediction
tool particularly helpful if clouds obscure the sea surface
during those two days or if AXBT assets are in short supply.
In addition, these procedures can be used in near real-time
processing of current satellite images and do not rely on any
atmospheric model processing. In any case, these thermal
predictions that are very accurate in location and fairly
accurate in temperature would be tactically significant, in
place of mean values or best-guess values, when doing sound
velocity calculations near meander, eddy, or frontal regions.

Relative temperature gradient analysis displayed the
expected correlation between satellite and AXBT values. Both
the AXBT and satellite gradients were 0.6 degrees per 60 am
on 17 November and 1 December while on 5 Cecember the AXBT
gradient was 0.56 degrees per 60 nm and the satellite gradient
was 0.52 degrees per 60 nm.

An interesting thermal feature whose horizontal sur-

face manifestation was detected by both the satellite and




the AXBT was a meander in the final stages of closing of¢

from its parent body of water to form an eddy. See the darker
region transected by the bucy line through buoy positions 23,
3, 22, and 4 in Figure 40. This warm-core meander had an
approximate 100 nm diameter with the exception of an open arm
extending southward into its parental water mass. The dlameter
was verified by the buoys dropped on the northern and southern
tracks. These buoys were 60 nm away from the center rack and

the warm meander did not show up on any ot the thermal traces.

The satellite indication of this diameter resulted in a slightly

larger radius, a fact attributed to the thermal resolution limi-

tations of the satellite data in determining weak temperature

boundaries. In the satellite images, this meander is surrounded

on the west, north, and east by the Subarctic Current-California

Current confluence. The center of the meander had a surface
temperature of 13.8, 14.9, and 14.4 degrees C on l7 November,
1 and 5 Tecember, respectively. A chart of the monthly mean
surface temperature for November 1980 (Renner, 198l) clearly
shows the intrusion of a large tongue cof warm water from the
area between San Francisco and Hawail northward along the
west coast of the United States.

The decrease 1n the surface temperature of the meander
over the project time period was reflected by the decrease

in the surface +-emperatures all along the bucy line. Both

rt

~he sateilite and the AXBT's recorded mean changes cf 0.9
iegrees between 17 November and 1 December and 0.7 Jlegrees

petween . December and 5 December. This drop in temperature
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is to be expected considering the weather conditions as men-
; tioned above. On 17 November, a low pressure system was
firmly entrenched over the Aleutians while a high pressure

system was anchored off of Southern California. This pressure

pattern is typical of the Northeast Pacific in early winter.

A cold front extending southward from the Aleutian low moved

T p—— Y

across the buoy line during the evening of 17 November and
crossed the U.S. coastline during the morning of 18 November.
Winds before passage were southerly at 25 knots while after
passage the wind shifted northerly at 30 knots; hence the

1 condition for considerable wind-mixing existed. A series of
cold fronts on 20-22 November and 25 November also passed
through the project area continuing to lower the sea surface

temperature and drive the mixed laver depth deeper. On 1

December, low pressure cells were established west of the
coast of Washington and about 500 nm west of the centrail
California coast. The Washington low strengthened and cen-
tered near buoy positions 7 cn 2 December. This low was
accompanied by winds in excess of 35 knots on 3 December over
the entire buoy area while a slow-mcving cold front hugged
the coastline. Cn 4 December, a high pressure area, previously
established in the Gulf of Alaska, moved into the project
: area from the north pushing the cold front well inland although
K the low remained off the Washington coast. The high moved
southerly on 5 December, influencing the weather over the

: entire buoy area ‘National Weather Serwvice, 1980b). See
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Figures 41, 42, and 43 for the surface weather depiction
charts for 17 November, 1 and 5 December, respectively.
Because the linear regression model mentioned earlier
was used to remove the effects of the atmosphere with fairly
good results, a comparison was made between the satellite
data and the GOSSTCOMP product. Sea surface temperature pro-
ducts from GOSSTCOMP have been subjected to an atmospheric
correction model and are issued on a weekly basis. On all
three days, the satellite data from this project were colder
than the GOSSTCOMP values. The mean difference for 17 November,
1 and 5 December were 2.0 degrees (s = 0.9 degrees), 3.2
degrees (s = 0.6 degrees), and 4.3 degrees (s = 0.9 degrees)
respectively with the overall mean of 3.2 degrees (s = 1.1
degrees). This overall mean agrees fairly well with the 3.5
to 3.9 degree bias enumerated by Xlein (1979). The reason for
the 3.2 degree bias can be attributed directly to the effects

of the atmosphere, exactly the same situaticn as seen in the

AXBT versus satellite comparisons mentioned previously. An
interesting point to be made is that the 3.2 degree bias of
GOSSTCOMP versus satellite data is higher than the 2.9 degree
bias of AXBT versus satellite data. This led to a comparison
between GOSSTCCMP and AXBT data with the result that GOSSTCCMP
: values were 0.3 degrees (s = 1.04 degrees) warmer overall than
tne AXBT ~alues. Because the project area was never totally
cloud-£free during the period of observations, i1t is felt that

the cvercorrection for atmosgheric effects described by Klein

(1979) is still a factor in the warmer GCSSTCCMP values. It
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should be mentioned that the GOSSTCOMP product did not
indicate the warm meander that the AXBT and satellite data
located, probably due to the large grid structure used by
GOSSTCOMP.

All three methods of sea surface temperature determin-
ation, AXBT, satellite, and GOSSTCOMP, were compared to the
20-year mean surface temperature values of Robinson (1976).
AXBT values versus climatology resulted in the November AXBT's
being 0.3 degrees colder than the mean while the December
values were about the same as the mean. The reason for the
cooler surface waters in November is probably a result of
the high incidence of weather frontal passage with accompany-
ing hign winds through the project area. As was expected,
climatology did not show the warm meander.

Comparison of satellite versus monthly mean data
found the satellite data averaging 3.0 to 2.7 degrees colder
than the mean for November and December. Comparison of GOSSTCOMP
versus the mean resulted in GOSSTCOMP being 0.4 degrees warmer
than the mean for November and 2.0 degrees colder than the
mean for December.

2. Vertical Distribution

There is no known way at present to sense remotely
the vertical thermal structure in the ocean; however, if one
combines knowledge of the horizontal gradients with clima-
tology, a fairly accurate synopsis of the upper ocean thermal

structure is possikle. A more accurate picture can be
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formulated if the satellite data are augmented with well-
placed AXBT drops.

From climatology, the expected mean surface tempera-
ture and the mean layer depth for November were 12.9 degrees
and 50 meters (s = 5 meters) respectively over the project
area. The AXBT mean surface temperature and mean layer depth
for 17 November were 12.6 degrees and 58 meters (s = 6 meters).
For December, climatology means were 10.8 degrees and 67 meters
(s = 6 meters) and the AXBT means were 10.8 degrees and 71
meters (s = 7 meters). Figures 44, 45, 46, and 47 show the
vertical structure alcong the buoy line on 17 November, 1 and
5 December (center track and north track) respectively. From
the numerous oceancographic studies in the area (Tully, 1961;
Tabata, 1961; etc.), it is known that during this pericd of
the year, the layer depth is deepening towards the maximum
limit of the top of the permanent halocline at 100 meters.

The 100-meter depth 1s not reached usually until February.

The deepening of the layer is directly attributable to the
turbulent mixing conditions caused by the sustained high wind
speeds and by the convective mixing caused by the surface
cocling during the calmer periods. The weather pattern fcr
late-November and early-December was discussed previously.

A general rule of thumb is that warm surface waters gJenerally
exhibit shallow layer depths while colder surface waters ex-
hibit deeper layer depths. This pattern held true throucghout
the proiect area. Although definitive sea surface temperature-

layer depth relationships were not within the scope of this
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project, it is conceivable that flight crews, after observing
a horizontal and vertical thermal analysis done on AXBT data
and satellite images from a previous day(s) could view cur-
rent satellite infrared images and through comparisons of
surface temperatures (atmospherically corrected or not) could
3 estimate the layer depth.

Further deployment of layer depth prediction tech-
nigues may be found in combining the works of James (1966),
McAlister and MclLeish (1970), and Mollo~Christensen and
Mascarenhas (1979). James described a way of using heat bud-
get calculations and wind-mixing parameters to predict the

ocean thermal structure. McAlister and MclLeish described an

airborne system that was capable of measurement of the total
heat flow from the sea. Mollo-Christiansen and Mascarenhas
used LANDSAT data to calculate heat storage in the upper mixed
layer of the ocean. The use of satellites to estimate wind
speed and direction has been demonstrated. If the heat budget
could be estimated using the principles described in the papers
above, and the winds determined, then the procedures described
by James may be applicable.

An example of how present satellites are inadequate to
sense the vertical structure is the fact that onliy the AXBT
traces located a region of a subsurface temperature maximum
on the northern end of the buoy line. This region would help

to define the lower extent of a subsurface sound channel.

There was no surface manifestation of this feature, like the
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warm meander, and hence the satellite completely missed it.
This temperature maximum was relatively narrow (50 meters)
and had an axis between 150 and 17% meters. On 17 November,
the area affected by the temperature maximum was relatively
large with the axis at the shallower depth. By 5 December,
the area affected was reduced by half with the axis depth
deepening in conjunction with the layer depth. The area of
the subsurface temperature maximum can be seen in Figures 44,

45, 46, and 47.
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V. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

It was determined that geographical locations over open
ocean areas could be located on satellite imagery to within
2 rixels or within 3 kilometers over 50% of the image (within
5 kilometers over 80%, worst case within 10.7 kilometers).
Location of satellite features on geographical charts using

a variation of the main program has similar accuracies.

Satellite observations can be a very effective tool if
used in conjunction with available groundtruth data. The
development of the NOAA-6 AVHRR allows a more accurate de-
termination of sea surface temperatures than from previous
satellites; however, the satellite mean values differ from
groundtruth values by 2.9 degrees C. This bias is attribu-
table directly to the effects of the atmosphere. By using a
method of linear regression, it is possible to "field-calibrate"
the satellite data so that the mean error between satellite
and AXBT data is reduced to 0.3 degrees. This small bias
held true whether 24 or 2 buoys were used to define the cali-
bration constants for the linear regression equation for a
single satellite pass. When these same constants were used
to predict the sea surface temperature on satellite passes ¢
days later and 15 days previous, the mean error increased
slightly to between 0.4 and 0.5 degrees. This three-week pre-
diction pericd saw the passage of numerous cold fronts and

experienced long periods of turbulent mixing conditions so the
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relatively small bias may make this procedure a possible
prediction tool in calibrating satellite images without the
need to use atmospheric attenuation models.

Relative temperature gradients were constant, as ex-
pected, between satellite and AXBT data values. The intro-
duction into the project area of a warm-core meander in the
final stages of becoming an eddy was apparent readily from
both the AXBT data and the satellite imagery, although it was
ignored by GOSSTCOMP. The detection of subsurface thermal
structures by satellites is successful only if there is a
surface manifestation of the feature such as the meander. A
subsurface temperature maximum that is associated with a sub-
surface sound channel was not detected by the satellite, as no
surface manifestations were present.

When GOSSTCOMP values were compared to AXBT values, an
overall 0.3 degree bias was noted, although individual daily
values ranged from 0.7 degrees colder to 1.2 degrees warmer
than the corresponding AXBT data.

Over the project periocd, the sea surface temperature
decreased on the average 1.8 degrees while the layer depth
deepened on the average 13 meters. The cooling and deepening
process was directly related to the number of frontal passages
and the high wind speeds during the project period. It may
be possible to use systems currently under development to sense
remotely the existing thermal structure to 100 meters; or to

use a combination of satellite instruments %o determine the




heat budget and wind speeds and from this information to

calculate the thermal structure.

Determining the exact location of thermal features on

satellite imagery is only the beginning in tactically employ-
ing satellite data for naval missions. Further development

of the relationship between the sea surface temperature and
the vertical thermal structure is warranted. An excellent
starting point would be along lines similar to those developed
under the ASWEPS program. If a possible relationship could

be derived, the use of environmental satellites by naval
tacticians could advance far beyond its present stage.

Using methods developed by this thesis, it is possible to

develop hypothetical scenarios that need to be tested opera-
tionally. Supposing that the 17 November satellite imagery
and AXBT data, and the 1 December satellite imagery cnly were
available, an antisubmarine aircraft f£light crew assigned a
surveillance mission on 1 December could have predicted within
one half degree the sea surface temperature over a wide ocean
area. Knowing both the vertical thermal structure f£rom 17
November and the effects of cocler surfaces and sustained
high winds on this structure, the flight crew could make a

fairly accurate grediction of the 1 December oceanographic

: and acoustic conditions. Development of techniques that relate
the surface temperature to the vertical structure would make

this process that much easier.

In addition to predicting the vertical structure, some

aspects of the horizontal structure are equally important,




especially to the fast-paced antisubmarine warfare efforts

of the carrier-based S-3A aircraft. Submarines may be able

to use sharply-delineated fronts and eddies to keep themselves
acoustically hidden from aircraft carriers while remaining
within weapons firing range. The persistence of these thermal
features over a period of time is seen easily in satellite
images and their exact geographical location can be determined
using the methods derived in this thesis. 1A current satellite
photo is far superior to other products now available in con-
veying this type of information. As an example, GOSSTCOMP
missed totally the small (100 nm diameter) warm-core meander
found in this project. GOSSTCOMP is also not a real-time
product.

In conclusion, the following recommendaticns for further
study are suggested:

(1) the development, where applicable, of an empirical
relationship between the sea surface temperature and the
vertical thermal structure;

(2) the development of thermal structure prediction tech-
nigues using both satellite data and the empirical relation-
ship developed above;

(3) a study of the persistence of horizontal thermal
features using satellite imagery;

{4) a study of hew accurately satellite-observed surface
thermal features reflect the subsurface structure;

(3} +the development of a streamlined LOCATE program
suitabla for ship-board use so that surface thermal features

frcm sacellite imagery <can be lccated more accurately;




(6) the further development and testing of the "field-

calibration" technique of dealing with atmospheric attenua-

tion; and,

(7) the investigation of including a current satellite

image, with thermnal features geographically located,

mission planning information.

in




APPENDIX A

COUNT~-TO-TEMPERATURE CONVERSION TABLE

COUNT

96
97
98
99
100
101
102
103
104
105
106
137
108

109

(from Kidwell,

1979)

TEMPERATURE

147

le.
15.
15.
15
14.
14
13.
13.
12.
12
11.
11.
11.
10.
10.

33

91

48

.06

63

.20

77

34

90

.03

59

26

.81
.36
.91
.46

.00

(degrees C)
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.08
62
.16
69
.23
.76
.28
.81
33
.85
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117
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